The midbrain ventral tegmental area (VTA), a key structure of the mesocorticolimbic system is anatomically connected with the hippocampal formation. In addition mesocortical dopamine was found to influence hippocampus-related memory and hippocampal synaptic plasticity, both being linked to the theta rhythm. Therefore, the aim of the present study was to evaluate the possible role of the VTA in the regulation of the hippocampal theta activity. The study was performed on urethane-anesthetized male Wistar rats in which theta rhythm was evoked by tail pinch. It was found that unilateral, temporal inactivation of the VTA by means of direct procaine injection resulted in bilateral suppression of the hippocampal theta which manifested as a loss of synchronization of hippocampal EEG and respective reduction of the power and also the frequency of the 3-6 Hz theta band. Depression of the power of the 3-6 Hz component of the EEG signal was also seen in spontaneous hippocampal EEG after procaine. The permanent destruction of the VTA by means of unilateral electrocoagulation evoked a long-lasting, mainly ipsilateral depression of the power of the theta with some influence on its frequency. Simultaneously, there was a substantial increase of the power in higher frequency bands indicating decrease of a synchrony of the hippocampal EEG activity. On the basis of these results indicating impairment of synchronization of the hippocampal activity the VTA may be considered as another part of the brainstem theta synchroning system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainresbull.2005.08.026 | DOI Listing |
PLoS Biol
January 2025
Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America.
Worrying about perceived threats is a hallmark of multiple psychological disorders including anxiety. This concern about future events is particularly important when an individual is faced with an approach-avoidance conflict. Potential goals to approach are known to be represented in the dorsal hippocampus during theta cycles.
View Article and Find Full Text PDFBehav Brain Res
January 2025
Department of Neurology, Changzhi People's Hospital, Changzhi, Shanxi Province 046000, China. Electronic address:
Memory is the ability to acquire and store information following an experience, which can be retrieved by related context exposure. Pioneering studies have demonstrated that sparsely distributed neuronal ensembles or engram cells can serve as neural substrates for storing and recalling memory traces. Many studies of neuronal ensembles have focused on the hippocampus, and increasing evidence has indicated that the neuronal oscillation is closely associated with hippocampal memory functions, including both encoding and retrieval processes.
View Article and Find Full Text PDFStem Cell Reports
December 2024
Laboratorio di Biologia, Scuola Normale Superiore, 56126 Pisa, Italy; Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 56124 Pisa, Italy. Electronic address:
The mechanisms that determine distinct embryonic pallial identities remain elusive. The central role of Wnt signaling in directing dorsal telencephalic progenitors to the isocortex or hippocampus has been elucidated. Here, we show that timely inhibition of MAPK/ERK and BMP signaling in neuralized mouse embryonic stem cells (ESCs) specifies a cell identity characteristic of the allocortex.
View Article and Find Full Text PDFNat Neurosci
January 2025
Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA.
What is good in one scenario may be bad in another. Despite the ubiquity of such contextual reasoning in everyday choice, how the brain flexibly uses different valuation schemes across contexts remains unknown. We addressed this question by monitoring neural activity from the hippocampus (HPC) and orbitofrontal cortex (OFC) of two monkeys performing a state-dependent choice task.
View Article and Find Full Text PDFHippocampus
January 2025
Cognitive Science Program and Department of Psychology, University of Arizona, Tucson, Arizona, USA.
Numerous scientific advances and discoveries have arisen from research on the hippocampal formation. This special issue provides first-person historical descriptions of these advances and discoveries in hippocampal research, written by those directly involved in the research. This is the first section of a special issue that will also include future articles on this topic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!