Porphyrinated cellulose laurate esters have been prepared in homogeneous DMA/LiCl medium by "one-pot, two-step" reactions starting from cellulose, protoporphyrin IX, and lauric acid and using a TsCl/Pyridine system. The plastic films obtained after casting were shown to display photobactericidal activity against Gram positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. This new photobactericidal polymer has potential for industrial, medical, or household applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2005.12.008 | DOI Listing |
Int J Biol Macromol
December 2023
University of São Paulo, São Carlos Institute of Chemistry (USP/IQSC), São Carlos, SP, Brazil.
This study aimed to investigate the application of biopolymeric materials (chitosan, gelatin, and pomegranate peel extract as photosensitizer) and antimicrobial photodynamic therapy (aPDT) on the physicochemical and microbial safety of strawberries. The photosensitizer potential of the materials was confirmed by a light-dose-dependent photobleaching profile. The application of light (525 nm; 50 J cm) decreased by >2 log CFU mL the survival of Staphylococcus aureus on the surface of the photoactive-biopolymeric films.
View Article and Find Full Text PDFDalton Trans
June 2021
Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentieva, 630090 Novosibirsk, Russia.
Despite the wide variety of strategies developed to combat pathogenic microorganisms, the infectious diseases they cause remain a worldwide health issue. Hence, the search for new disinfectants, which prevent infection spread, constitutes an extremely urgent task. One of the most promising methods is the use of photoactive compounds - photosensitizers, capable of generating reactive oxygen species, in particular, singlet oxygen (O2(1Δg)), which causes rapid and effective death of microorganisms of all types.
View Article and Find Full Text PDFJ Mater Chem B
August 2016
Laboratory of Photochemistry, Department of Drug Science, Viale Andrea Doria 6, 95125, Catania, Italy.
A novel photoresponsive molecular hybrid has been embedded in poly(lactic-co-glycolic acid) (PLGA) to give an antibacterial polymeric film generating nitric oxide (NO) under visible light, with concomitant fluorescence reporting of NO release. The molecular hybrid integrates a nitroaniline NO photodonor and a coumarin latent fluorophore in the same molecular skeleton and results in quite homogeneous distribution in the polymer matrix where it preserves well the photobehavior exhibited in solution. The doped PLGA film shows an excellent optical transparency and can be excited by visible light leading to the production of NO and the parallel fluorescence revival of the coumarin fluorophore, which acts as an optical NO reporter.
View Article and Find Full Text PDFEnviron Sci Technol
February 2009
Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina.
Spectroscopic and photodynamic properties of polymeric films bearing porphyrin units have been studied in both solution containing photooxidizable substrates and in vitro on Escherichia coli and Candida albicans microorganisms. The films were formed by electrochemical polymerization of 5,10,15,20-tetra(4-N,N-diphenylaminophenyl)porphyrin (H2P-film) and its complex with Pd(II) (PdP-film) on optically transparent indium tin oxide (ITO) electrodes. Absorption spectroscopic studies show the characteristic Soret and Q bands of the porphyrin in the visible region and a band at approximately 350 nm corresponding to the tetraphenylbenzidine units.
View Article and Find Full Text PDFBioorg Med Chem Lett
March 2006
Université de Limoges, Laboratoire de Chimie des Substances Naturelles, 123 Avenue Albert Thomas, 87060 Limoges cedex, France.
Porphyrinated cellulose laurate esters have been prepared in homogeneous DMA/LiCl medium by "one-pot, two-step" reactions starting from cellulose, protoporphyrin IX, and lauric acid and using a TsCl/Pyridine system. The plastic films obtained after casting were shown to display photobactericidal activity against Gram positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. This new photobactericidal polymer has potential for industrial, medical, or household applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!