N-Acetylglutamate kinase (NAGK) catalyses the second step in the route of arginine biosynthesis. In many organisms this enzyme is inhibited by the final product of the route, arginine, and thus plays a central regulatory role. In addition, in photosynthetic organisms NAGK is the target of the nitrogen-signalling protein PII. The 3-D structure of homodimeric, arginine-insensitive, Escherichia coli NAGK, clarified substrate binding and catalysis but shed no light on arginine inhibition of NAGK. We now shed light on arginine inhibition by determining the crystal structures, at 2.75 A and 2.95 A resolution, of arginine-complexed Thermotoga maritima and arginine-free Pseudomonas aeruginosa NAGKs, respectively. Both enzymes are highly similar ring-like hexamers having a central orifice of approximately 30 A diameter. They are formed by linking three E.coli NAGK-like homodimers through the interlacing of an N-terminal mobile kinked alpha-helix, which is absent from E.coli NAGK. Arginine is bound in each subunit of T.maritima NAGK, flanking the interdimeric junction, in a site formed between the N helix and the C lobe of the subunit. This site is also present, in variable conformations, in P.aeruginosa NAGK, but is missing from E.coli NAGK. Arginine, by gluing the C lobe of each subunit to the inter-dimeric junction, may stabilize an enlarged active centre conformation, hampering catalysis. Acetylglutamate counters arginine inhibition by promoting active centre closure. The hexameric architecture justifies the observed sigmoidal arginine inhibition kinetics with a high Hill coefficient (N approximately 4), and appears essential for arginine inhibition and for NAGK-PII complex formation, since this complex may involve binding of NAGK and PII with their 3-fold axes aligned. The NAGK structures allow identification of diagnostic sequence signatures for arginine inhibition. These signatures are found also in the homologous arginine-inhibited enzyme NAG synthase. The findings on NAGK shed light on the structure, function and arginine inhibition of this synthase, for which a hexameric model is constructed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2005.11.079DOI Listing

Publication Analysis

Top Keywords

arginine inhibition
28
arginine
12
nagk
11
arginine biosynthesis
8
thermotoga maritima
8
pseudomonas aeruginosa
8
route arginine
8
light arginine
8
nagk light
8
ecoli nagk
8

Similar Publications

Numerous diseases have been connected to protein arginine methylations mediated by protein arginine methyltransferase 5 (PRMT5). Clinical investigations of the PRMT5-specific inhibitor GSK3326595 are currently being conducted, and the results are promising for preventing cancers. However, the detailed mechanism of PRMT5 promoting colorectal cancer (CRC) malignant progression remains unclear.

View Article and Find Full Text PDF

Background: 6-Nitrodopamine (6-ND) released from rat vas deferens acts an endogenous modulator of vas deferens contractility.

Objectives: To investigate whether rat isolated seminal vesicles (RISV) releases 6-ND, the mechanisms involved in the release, and the modulatory role of 6-ND on tissue contractility.

Methods: Rat seminal vesicles were removed and placed in Krebs-Henseleit's solution at 37°C for 30 min, and an aliquot was used to analyze the concentrations of 6-ND, dopamine, noradrenaline, and adrenaline by liquid chromatography with tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

Proximate composition, peptide characterization and bioactive properties of faba bean blanching water.

Food Res Int

January 2025

The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand.

Faba bean (Vicia faba L.) offers a rich nutritional profile with high protein content and abundant vitamins and minerals. Processing of faba beans for freezing requires blanching, yielding liluva (legume processing water), possibly containing leached macronutrients, with potential for upcycling.

View Article and Find Full Text PDF

Advances in the impact of ASS1 dysregulation on metabolic reprogramming of tumor cells.

Cell Signal

January 2025

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China. Electronic address:

ASS1(argininosuccinate synthase 1) is a rate-limiting enzyme in the urea cycle, catalyzing the synthesis of argininosuccinate from citrulline and aspartate to ultimately produce arginine and support cellular metabolism. Increasing evidence suggests that ASS1 is commonly dysregulated in the tumor microenvironment, promoting tumor cell metastasis and infiltration. With a deeper understanding of tumor metabolic reprogramming in recent years, the impact of ASS1 dysregulation on abnormal tumor metabolism has attracted growing interest among researchers.

View Article and Find Full Text PDF

Rbfox3 Promotes Transformation of MDSC-Like Tumor Cells to Shape Immunosuppressive Microenvironment.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300450, China.

Myeloid-derived suppressor cells (MDSCs) within the tumor microenvironment (TME) contribute to the malignant progression of tumors by exerting immunosuppressive effects. Bacterial lipopolysaccharides (LPS) have been widely demonstrated in various types of solid tumors. LPS can promote the malignant progression of tumors, which mechanism has not yet been fully elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!