Identification of forkhead transcription factors in cortical and dopaminergic areas of the adult murine brain.

Brain Res

Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.

Published: January 2006

AI Article Synopsis

  • The murine forkhead family of transcription factors includes over 30 members crucial for embryonic development and involved in cell processes like proliferation and differentiation.
  • In a study, specific forkhead genes were identified, particularly Foxj2, Foxk1, and the murine equivalent of the human ILF1 gene, which are preferentially expressed in complex cortical structures.
  • Further analysis highlighted ILF1 as a new transcriptional regulator in dopamine neurons of the midbrain, suggesting these factors might be important for the maintenance and survival of both developing and adult neurons.

Article Abstract

The murine forkhead family of transcription factors consists of over 30 members, the vast majority of which is important in embryonic development. Implicated in processes such as proliferation, differentiation and survival, forkhead factors show highly restricted expression patterns. In search for forkhead genes expressed in specific neural systems, we identified multiple family members. We performed a detailed expression analysis for Foxj2, Foxk1 and the murine orthologue of the human ILF1 gene, which show a remarkable preference for complex cortical structures. In addition, a comprehensive examination of forkhead gene expression in dopamine neurons of the ventral tegmental area and substantia nigra pars compacta, revealed Ilf1 as a novel transcriptional regulator in midbrain dopamine neurons. These forkhead transcription factors may play a role in maintenance and survival of developing and adult neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2005.11.022DOI Listing

Publication Analysis

Top Keywords

transcription factors
12
forkhead transcription
8
dopamine neurons
8
forkhead
5
identification forkhead
4
factors
4
factors cortical
4
cortical dopaminergic
4
dopaminergic areas
4
areas adult
4

Similar Publications

Chronic stress-induced cholesterol metabolism abnormalities promote ESCC tumorigenesis and predict neoadjuvant therapy response.

Proc Natl Acad Sci U S A

February 2025

Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.

Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.

View Article and Find Full Text PDF

Protozoa-enhanced conjugation frequency alters the dissemination of soil antibiotic resistance.

ISME J

January 2025

State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.

Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes. However, the effects of protozoan predation on antibiotic resistance genes dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of antibiotic resistance genes to soil microbial communities.

View Article and Find Full Text PDF

This study examined the effects of treadmill running (TR) regimens on craniofacial pain- and anxiety-like behaviors, as well as their effects on neural changes in specific brain regions of male mice subjected to repeated social defeat stress (SDS) for 10 days. Behavioral and immunohistochemical experiments were conducted to evaluate the impact of TR regimens on SDS-related those behaviors, as well as epigenetic and neural activity markers in the anterior cingulate cortex (ACC), insular cortex (IC), rostral ventromedial medulla (RVM), and cervical spinal dorsal horn (C2). Behavioral responses were quantified using multiple tests, while immunohistochemistry measured histone H3 acetylation, histone deacetylases (HDAC1, HDAC2), and neural activity markers (FosB and phosphorylated cAMP response element-binding protein (pCREB).

View Article and Find Full Text PDF

Purpose: Rose Bengal Photodynamic Therapy (RB-PDT) offers dual therapeutic benefits by enhancing corneal stiffness and providing antibacterial activity, presenting significant potential for patients with keratoconus complicated by keratitis. Our purpose was to assess the effect of rose bengal photodynamic therapy (RB-PDT) on the expression of pro-inflammatory cytokines and chemokines, as well as on extracellular matrix (ECM)-related molecules, in lipopolysaccharide (LPS)-induced inflammation of keratoconus human corneal fibroblasts (KC-HCFs). Additionally, the involvement of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways which are downstream of the Toll-like receptor 4 (TLR4) pathway were examined.

View Article and Find Full Text PDF

Pancreatic Ductal Adenocarcinoma (PDAC) is a devastating disease with poor clinical outcomes, which is mainly because of delayed disease detection, resistance to chemotherapy, and lack of specific targeted therapies. The disease's development involves complex interactions among immunological, genetic, and environmental factors, yet its molecular mechanism remains elusive. A major challenge in understanding PDAC etiology lies in unraveling the genetic profiling that governs the PDAC network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!