We have studied sarin-induced global gene expression patterns at an early time point (15 min; 0.5xLD50) and a later time point (3 months; 1xLD50) using Affymetrix: Rat Neurobiology U34 chips in male, Sprague-Dawley rats and have identified a total of 65 (early) and 38 (late) genes showing statistically significant alterations from control levels at 15 min and 3 months, respectively. At the early time point, those that are classified as ion channel, cytoskeletal and cell adhesion molecules, in addition to neuropeptides and their receptors predominated over all other groups. The other groups included: cholinergic signaling, calcium channel and binding proteins, transporters, chemokines, GABAnergic, glutamatergic, aspartate, catecholaminergic, nitric oxide synthase, purinergic, and serotonergic signaling molecules. At the late time point, genes that are classified as calcium channel and binding proteins, cytoskeletal and cell adhesion molecules and GABAnergic signaling molecules were most prominent. Seven molecules (Ania-9, Arrb-1, CX-3C, Gabab-1d, Nos-2a, Nrxn-1b, PDE2) were identified that showed altered persistent expression in both time points. Selected genes from each of these time points were further validated using semi quantitative RT-PCR approaches. Some of the genes that were identified in the present study have been shown to be involved in organophosphate-induced neurotoxicity by both other groups as well as ours. Principal component analysis (PCA) of the expression data from both time points was used for comparative analysis of the gene expression, which indicated that the changes in gene expression were a function of dose and time of euthanasia after the treatment. Our model also predicts that besides dose and duration of post-treatment period, age and possibly other factors may be playing important roles in the regulation of pathways, leading to the neurotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2005.10.051DOI Listing

Publication Analysis

Top Keywords

gene expression
16
time point
16
time points
12
time
8
early time
8
cytoskeletal cell
8
cell adhesion
8
adhesion molecules
8
calcium channel
8
channel binding
8

Similar Publications

The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.

Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.

View Article and Find Full Text PDF

Krait2: a versatile software for microsatellite investigation, visualization and marker development.

BMC Genomics

January 2025

Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China.

Background: Microsatellites are highly polymorphic repeat sequences ubiquitously interspersed throughout almost all genomes which are widely used as powerful molecular markers in diverse fields. Microsatellite expansions play pivotal roles in gene expression regulation and are implicated in various neurological diseases and cancers. Although much effort has been devoted to developing efficient tools for microsatellite identification, there is still a lack of a powerful tool for large-scale microsatellite analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!