Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Transposable elements (TEs) are major components of eukaryotic genomes, contributing about 50% to the size of mammalian genomes. TEs serve as recombination hot spots and may acquire specific cellular functions, such as controlling protein translation and gene transcription. The latter is the subject of the analysis presented. We scanned TE sequences located in promoter regions of all annotated genes in the human genome for their content in potential transcription regulating signals. All investigated signals are likely to be over-represented in at least one TE class, which shows that TEs have an important potential to contribute to pre-transcriptional gene regulation, especially by moving transcriptional signals within the genome and thus potentially leading to new gene expression patterns. We also found that some TE classes are more likely than others to carry transcription regulating signals, which can explain why they have different retention rates in regions neighboring genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2005.09.036 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!