Epitope mapping using antibodies against factor VIII (FVIII) has been performed using blotting techniques with truncated and/or digested FVIII molecules. Here, we focused on the precise mapping of affinity purified IgG from patients with an immune response against blood clotting FVIII using synthetic peptide arrays on cellulose membranes comprising the entire sequence of FVIII. The aim was to elucidate the epitope profile from different inhibitors and possibly detect new epitopes, which have not been described before. The epitope patterns from five patients showed reactivity with all domains in the FVIII molecule, but were different between various patients. These results included epitopes usually buried within the folded protein. However, in competition assays using FVIII as competitive agent in a mixture with inhibitor IgG, the most immunogenic regions were located in the FVIII light chain. Our results show that the C1 domain was the region with highest immunogenicity in all patients. Here, we demonstrate that the SPOT method is very well suited for the precise location of epitopes in the core of the protein, which usually cannot be detected by other methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jim.2005.10.016DOI Listing

Publication Analysis

Top Keywords

synthetic peptide
8
peptide arrays
8
fviii
7
mapping fviii
4
fviii inhibitor
4
epitopes
4
inhibitor epitopes
4
epitopes cellulose-bound
4
cellulose-bound synthetic
4
arrays epitope
4

Similar Publications

The recent development of modular universal chimeric antigen receptor (CAR) T-cell platforms that use bifunctional adaptor intermediates to redirect engineered T-cell effector function has greatly expanded the capabilities of adoptive T-cell therapy, enabling safer and more comprehensive cancer treatment. However, universal CAR receptor systems rely on unstable transient recognition of tag-coupled intermediates for T-cell activation, and the array of targeting intermediates has been limited to antibodies and small molecules. Addressing these shortcomings, we engineered universal CAR T-cell receptors that can be covalently modified with synthetic biomaterials by accelerated SpyCatcher003-SpyTag003 chemistry for cancer-cell targeting.

View Article and Find Full Text PDF

Background: Liver fibrosis is a serious global health issue, but current treatment options are limited due to a lack of approved therapies capable of preventing or reversing established fibrosis.

Aim: This study investigated the antifibrotic effects of a synthetic peptide derived from α-lactalbumin in a mouse model of thioacetamide (TAA)-induced liver fibrosis.

Methods: analyses were conducted to assess the physicochemical properties, pharmacophore features, and docking interactions of the peptide.

View Article and Find Full Text PDF

iRGD-Targeted Biosynthetic Nanobubbles for Ultrasound Molecular Imaging of Osteosarcoma.

Int J Nanomedicine

January 2025

Department of Ultrasound, The second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518061, People's Republic of China.

Purpose: Osteosarcoma is the most common primary malignant tumor of the bone. However, there is a lack of effective means for early diagnosis due to the heterogeneity of tumors and the complexity of tumor microenvironment. αvβ3 integrin, a crucial role in the growth and spread of tumors, is not only an effective biomarker for cancer angiogenesis, but also highly expressed in many tumor cells.

View Article and Find Full Text PDF

The Role of Structural Flexibility in Hydrocarbon-Stapled Peptides Designed to Block Viral Infection via Human ACE2 Mimicry.

Pept Sci (Hoboken)

November 2024

Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois 60637, United States of America.

The COVID-19 pandemic drove a uniquely fervent pursuit to explore the potential of peptide, antibody, protein, and small-molecule based antiviral agents against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The interaction between the SARS-CoV2 spike protein with the angiotensin-converting enzyme 2 (ACE2) receptor that mediates viral cell entry was a particularly interesting target given its well described protein-protein interaction (PPI). This PPI is mediated by an α-helical portion of ACE2 binding to the receptor binding domain (RBD) of the spike protein and thought to be susceptible to blockade through molecular mimicry.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) infects cells by attaching to heparan sulfate proteoglycans (HSPG) and Na/taurocholate cotransporting polypeptide (NTCP). The endothelial lipase LIPG bridges HSPG and HBV, facilitating HBV attachment. From a randomized peptide expression library, we identified a short sequence binding to LIPG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!