A fast spin echo two-point Dixon (fast 2PD) technique was developed for efficient T2-weighted imaging with uniform water and fat separation. The technique acquires two interleaved fast spin echo images with water and fat in-phase and 180 degrees out-of-phase, respectively, and generates automatically separate water and fat images for each slice. The image reconstruction algorithm uses an improved and robust region-growing scheme for phase correction and achieves consistency in water and fat identification between different slices by exploiting the intrinsic correlation between the complex images from two neighboring slices. To further lower the acquisition time to that of a regular fast spin echo acquisition with a single signal average, we combined the fast 2PD technique with sensitivity encoding (SENSE). Phantom experiments show that the fast 2PD and SENSE are complementary in scan efficiency and signal-to-noise ratio (SNR). In vivo data from scanning of clinical patients demonstrate that T2-weighted imaging with uniform and consistent fat separation, including breath-hold abdominal examinations, can be readily performed with the fast 2PD technique or its combination with SENSE.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2005.10.005DOI Listing

Publication Analysis

Top Keywords

fast spin
16
spin echo
16
fast 2pd
16
water fat
16
t2-weighted imaging
12
2pd technique
12
fast
8
echo two-point
8
two-point dixon
8
technique combination
8

Similar Publications

Spin Glass State and Griffiths Phase in van der Waals Ferromagnetic Material FeGeTe.

Nanomaterials (Basel)

December 2024

School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China.

The discovery of two-dimensional (2D) van der Waals ferromagnetic materials opens up new avenues for making devices with high information storage density, ultra-fast response, high integration, and low power consumption. FeGeTe has attracted much attention because of its ferromagnetic transition temperature near room temperature. However, the investigation of its phase transition is rare until now.

View Article and Find Full Text PDF

Background: Bladder injury during cesarean delivery (CD) in pregnant women with severe placenta accreta spectrum (PAS) disorders mostly occurs in the dissection of vesico-uterine space. Placental MRI may help to assess the risk of bladder injury preoperatively.

Purpose: To identify the high-risk MRI signs of bladder injury during CD in women with severe PAS.

View Article and Find Full Text PDF

Faster Acquisition and Improved Image Quality of T2-Weighted Dixon Breast MRI at 3T Using Deep Learning: A Prospective Study.

Korean J Radiol

January 2025

Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Objective: The aim of this study was to compare image quality features and lesion characteristics between a faster deep learning (DL) reconstructed T2-weighted (T2-w) fast spin-echo (FSE) Dixon sequence with super-resolution (T2) and a conventional T2-w FSE Dixon sequence (T2) for breast magnetic resonance imaging (MRI).

Materials And Methods: This prospective study was conducted between November 2022 and April 2023 using a 3T scanner. Both T2 and T2 sequences were acquired for each patient.

View Article and Find Full Text PDF

Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials have great potential for applications in ultrahigh-definition (UHD) organic light-emitting diode (OLED) displays, that benefit from their narrowband emission characteristic. However, key challenges such as aggregation-caused quenching (ACQ) effect and slow triplet-to-singlet spin-flip process, especially for blue MR-TADF materials, continue to impede their development due to planar skeletons and relatively large ΔESTs. Here, an effective strategy that incorporates multiple carbazole donors into the parent MR moieties is proposed, synergistically engineering their excited states and steric hindrances to enhance both the spin-flip process and quenching resistance.

View Article and Find Full Text PDF

Follicle count, a pivotal metric in the adjunct diagnosis of polycystic ovary syndrome (PCOS), is often underestimated when assessed via transvaginal ultrasonography compared to MRI. Nevertheless, the repeatability of follicle counting using traditional MR images is still compromised by motion artifacts or inadequate spatial resolution. In this prospective study involving 22 PCOS patients, we employed periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and single-shot fast spin-echo (SSFSE) T2-weighted sequences to suppress motion artifacts in high-resolution ovarian MRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!