In the literature, biological tyrosine nitrations have been reported to depend not only on peroxynitrite but also on nitrite/hydrogen peroxide linked to catalysis by myeloperoxidase. In endotoxin-stimulated RAW 264.7 macrophages, we have detected a major nitrotyrosine positive protein band around 72 kDa and identified it as prostaglandin endoperoxide synthase-2 (PGHS-2). Isolated PGHS-2 in absence of its substrate arachidonate was not only tyrosine-nitrated with peroxynitrite, but also with nitrite/hydrogen peroxide in complete absence of myeloperoxidase. Our data favor an autocatalytic activation of nitrite by PGHS-2 with a subsequent nitration of the essential tyrosine residue in the cyclooxygenase domain. Under inflammatory conditions, nitrite formed via NO-synthase-2 may therefore act as an endogenous regulator for PGHS-2 in stimulated macrophages. Nitration of PGHS-2 by the autocatalytic activation of nitrite further depends on the intracellular concentration of arachidonate since arachidonate reacted competitively with nitrite and could prevent PGHS-2 from nitration when excessively present.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2005.12.009DOI Listing

Publication Analysis

Top Keywords

prostaglandin endoperoxide
8
endoperoxide synthase-2
8
raw 2647
8
2647 macrophages
8
peroxynitrite nitrite/hydrogen
8
nitrite/hydrogen peroxide
8
autocatalytic activation
8
activation nitrite
8
pghs-2
6
autocatalytic tyrosine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!