Ascorbic acid reduction of microtubule protein disulfides and its relevance to protein S-nitrosylation assays.

Biochem Biophys Res Commun

Department of Chemistry, The College of William and Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA.

Published: February 2006

The biotin switch assay was developed to aid in the identification of S-nitrosylated proteins in different cell types. However, our work with microtubule proteins including tubulin and its associated proteins tau and microtubule-associated protein-2 shows that ascorbic acid is not a selective reductant of protein S-nitrosothiols as described in the biotin switch assay. Herein we show that ascorbic acid reduces protein disulfides in tubulin, tau, and microtubule-associated protein-2 that are formed by peroxynitrite anion. Reduction of microtubule-associated protein disulfides by ascorbic acid following peroxynitrite treatment restores microtubule polymerization kinetics to control levels. We also show that ascorbic acid reduces the disulfide dithiobis(2-nitrobenzoic acid), a reagent commonly used to detect protein thiols. Not only do we describe a new reactivity of ascorbic acid with microtubule proteins but we expose an important limitation when using the biotin switch assay to detect protein S-nitrosylation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2005.12.013DOI Listing

Publication Analysis

Top Keywords

ascorbic acid
24
protein disulfides
12
biotin switch
12
switch assay
12
protein s-nitrosylation
8
microtubule proteins
8
tau microtubule-associated
8
microtubule-associated protein-2
8
acid reduces
8
detect protein
8

Similar Publications

The effects of 5.8-GHz microwave (MW) irradiation on the synthesis of mesoporous selenium nanoparticles (mSeNPs) in aqueous medium by reduction of selenite ions with ascorbic acid, using zinc nanoparticles as a hard template and cetyltrimethylammonium bromide (CTAB) as a micellar template, are examined for the first time with a particular emphasis on MW-particle interactions and the NPs morphology. This MW-assisted synthesis is compared to 2.

View Article and Find Full Text PDF

Nutritional value, HPLC-DAD analysis and biological activities of Ceratonia siliqua L. pulp based on in vitro and in silico studies.

Sci Rep

December 2024

Agri-food Technology and Quality Laboratory, Regional Centre of Agricultural Research of Tadla, National Institute of Agricultural research (INRA), Avenue Ennasr, BP 415 Rabat principal, Rabat, 10090, Morocco.

The phytochemical, nutritional, and biological features of wild carob pulp from Tanzight (TN), Ait-Waada (AW), and Tizi-ghnayn (TG) in Azilal were studied. The results of the study reveal that the carob pulp examined has a low-fat level. AW had the most total sugar (78.

View Article and Find Full Text PDF

Scurvy is now considered to be a rare disease in European countries, even among children, but it still exists. We report the case of an 18-month-old boy who was initially hospitalized for a walking disorder and ultimately diagnosed with scurvy. Radiographs were compatible with rickets, but biological analysis ruled out this diagnosis.

View Article and Find Full Text PDF

The present research work is concerned with the production and optimization of the dopa-oxidase enzyme by using pre-grown mycelia of Aspergillus oryzae. Different strains of A. oryzae were collected and isolated from various soil samples.

View Article and Find Full Text PDF

Strawberry (Fragaria × ananassa) is a horticultural crop known for its sensitivity to mechanical damage and susceptibility to postharvest decay. In recent years, various strategies have been implemented to enhance both the yield and quality of strawberries, among which the application of nitric oxide-producing compounds has garnered special attention. The present study aimed to investigate the effects of varying concentrations of sodium nitroprusside (SNP), specifically 0, 200, 400, and 600 μM, on strawberries (cv.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!