Anomalous dielectric relaxation in strong ac external fields.

J Chem Phys

Mathématiques Et Physique pour les Systèmes, Groupe de Physique Statistique et Moléculaire, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France.

Published: November 2005

Dielectric relaxation of complex polar fluids is considered in the context of the anomalous diffusion characterized by a fractional parameter alpha < or = 1 (subdiffusion). An infinite hierarchy of three-term differential-recurrence equations governing the time evolution of the electric polarization is established by following a purely phenomenological procedure. The matrix-continued fraction method is used to derive the exact numerical solution of the stationary regime for an assembly of nonelectrically interacting, polar symmetric-top molecules in presence of a strong ac electric field. The results so obtained are valid to any order in the field strength parameter gamma1, thus extending previous theories applicable to fields of very small amplitudes only. This is illustrated by Cole-Cole diagrams and three-dimensional relaxation spectra for the first- and third-harmonic components of the electric polarization as a function of alpha, gamma1, and the angular frequency.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2046627DOI Listing

Publication Analysis

Top Keywords

dielectric relaxation
8
electric polarization
8
anomalous dielectric
4
relaxation strong
4
strong external
4
external fields
4
fields dielectric
4
relaxation complex
4
complex polar
4
polar fluids
4

Similar Publications

The dielectric behavior of Asparagine (CHNO) in water over the frequency range of 10 MHz to 30 GHz in the temperature region of 278.15-303.15 K in a step of 5 K has been carried out using time domain reflectometry (TDR) at various concentrations of asparagine.

View Article and Find Full Text PDF

The optical and dielectric properties of opals with different water contents were investigated using terahertz time-domain spectroscopy. The refractive indices and absorption coefficients showed different trends due to the different water contents. The effective medium theory was used to extract the intrinsic dielectric permittivity of opal from opal-polytetrafluoroethylene mixtures.

View Article and Find Full Text PDF

The functions of graphene have garnered significant attention in recent research. A profound understanding of the principles of temperature-dependent electromagnetic responses is crucial for guiding the design of advanced functional materials and devices. From this perspective, the thermally tailored mechanisms of polarization genes and conduction genes are emphasized.

View Article and Find Full Text PDF

Interplay of chain dynamics and ion transport on mechanical behavior and conductivity in ionogels.

Soft Matter

December 2024

South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.

Understanding the interplay among the mechanical behavior, ionic conductivity and chain dynamics of ionogels is essential for designing flexible conductors that exhibit both high conductivity and excellent mechanical properties. In this study, ionogels were synthesized the radical polymerization of ,'-dimethylacrylamide (DMAA) and methacrylic acid (MAAc) monomers in the presence of ionic liquid 1-ethyl-3-methylimidazolium trifluoromethane sulfonate ([EMIM][OTf]). By varying the mass content of ionic liquid within ionogels, we investigated the mechanical behavior and ionic conductivity at the macroscopic scale using tensile, rheological testing and electrochemical impedance spectroscopy, as well as the dynamic behavior of chain segments and ions within the network at the microscopic scale using broadband dielectric relaxation spectroscopy (BDS) over a broad temperature range.

View Article and Find Full Text PDF

Synergistic Enhancement of Energy Storage Performance in NaNbO-Based Lead-Free Relaxor Ferroelectrics via Weakly Coupled Relaxation Behavior.

Small

December 2024

Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, Guangxi Key Laboratory of Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, China.

Advancements in pulsed electronic power systems depend significantly on high-performance dielectric energy storage ceramics. Lead-free NaNbO-based energy-storage ceramics are important materials for next-generation pulsed power capacitors owing to their large polarization and bandgaps. However, the high energy loss caused by the antiferroelectric-ferroelectric phase transition leads to low recoverable energy storage density and efficiency, which hinders its practical application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!