Phase and glass transitions in short-range central potential model systems: the case of C60.

J Phys Chem B

Dipartimento di Fisica, Università degli Studi di Messina, Contrada Papardo, C.P. 50-98166 Messina, Italy.

Published: December 2005

Extensive molecular dynamics simulations show that a short-range central potential, suited to model C60, undergoes a high temperature transition to a glassy phase characterized by the positional disorder of the constituent particles. Crystallization, melting, and sublimation, which also take place during the simulation runs, are illustrated in detail. It turns out that vitrification and the mentioned phase transitions occur when the packing fraction of the system-defined in terms of an effective hard-core diameter-equals that of hard spheres at their own glass and melting transition, respectively. A close analogy also emerges between our findings and recent mode coupling theory calculations of structural arrest lines in a similar model of protein solutions. We argue that the conclusions of the present study might hold for a wide class of potentials currently employed to mimic interactions in complex fluids (some of which are of biological interest), suggesting how to achieve at least qualitative predictions of vitrification and crystallization in those systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp054392dDOI Listing

Publication Analysis

Top Keywords

short-range central
8
central potential
8
phase glass
4
glass transitions
4
transitions short-range
4
potential model
4
model systems
4
systems case
4
case c60
4
c60 extensive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!