A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ion pair formation in water. association constants of bolaform, bisquaternary ammonium, electrolytes by chemical trapping. | LitMetric

Ion pair formation in water. association constants of bolaform, bisquaternary ammonium, electrolytes by chemical trapping.

J Phys Chem B

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

Published: December 2005

The first and second association constants, K1 and K2, for ion pair formation in aqueous 0.02-3.5 M solutions of bis(trimethyl)-alpha,omega-alkanediammonium halides with variable spacer lengths, 1-n-1 2X (n = 2-4, X = Cl, Br) and bolaform salts and for tetramethylammonium halides (TMAX, X = Cl, Br), K(TMAX), were determined by the chemical trapping method. Values for K(TMAX) are small, K(TMABr) = 0.83 M(-1) and K(TMACl) = 0.29 M(-1), in agreement with literature values. For the bolaform salts, K1 depends on spacer length and counterion type, ranges from 0.4 to 17 M(-1), is 2-10 times larger than K2, is larger for Br- than Cl-, and decreases by a factor of approximately 3 for Cl- and approximately 10 for Br- as n increases from 2 to 4. K2, for the formation of bolaform dihalide pair, is essentially the same as that for ion pair formation in TMAX solutions, i.e., K2 approximately K(TMAX). Values of K1 and K(TMABr) obtained from changes in 79Br line widths are in good agreement with those obtained by chemical trapping. The results are consistent with a thermodynamic model in which the ion association depends on the balance of the ion specific hydration free energies of cations and anions and their ion specific and hydration interactions in ion pairs. Spacer length dependent ion pairing by bolaform electrolytes, which are analogues of the headgroups and counterions of gemini amphiphiles, suggests a new model for the spacer length dependent sphere-to-rod transitions of gemini micelles. Neutral, but polar, headgroup-counterion pairs have a lower demand for hydration that free headgroups and counterions, and headgroup-counterion pair formation releases interfacial water into the bulk aqueous phase, permitting tighter amphiphile packing in rodlike micelles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0546195DOI Listing

Publication Analysis

Top Keywords

pair formation
16
ion pair
12
chemical trapping
12
spacer length
12
ion
8
association constants
8
bolaform salts
8
ion specific
8
specific hydration
8
hydration free
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!