Finding why protein-protein interactions (PPIs) are so specific can provide a valuable tool in a variety of fields. Statistical surveys of so-called transient complexes (like those relevant for signal transduction mechanisms) have shown a tendency of polar residues to participate in the interaction region. Following this scheme, residues in the unbound partners have to compete between interacting with water or interacting with other residues of the protein. On the other hand, several works have shown that the notion of active site electrostatic preorganization can be used to interpret the high efficiency in enzyme reactions. This preorganization can be related to the instability of the residues important for catalysis. In some enzymes, in addition, conformational changes upon binding to other proteins lead to an increase in the activity of the enzymatic partner. In this article the linear response approximation version of the semimacroscopic protein dipoles Langevin dipoles (PDLD/S-LRA) model is used to evaluate the stability of several residues in two phosphate hydrolysis enzymes upon complexation with their activating partners. In particular, the residues relevant for PPI and for phosphate hydrolysis in the CDK2/Cyclin A and Ras/GAP complexes are analyzed. We find that the evaluation of the stability of residues in these systems can be used to identify not only active site regions but it can also be used as a guide to locate "hot spots" for PPIs. We also show that conformational changes play a major role in positioning interfacing residues in a proper "energetic" orientation, ready to interact with the residues in the partner protein surface. Thus, we extend the preorganization theory to PPIs, extrapolating the results we obtained from the above-mentioned complexes to a more general case. We conclude that the correlation between stability of a residue in the surface and the likelihood that it participates in the interaction can be a general fact for transient PPIs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.20791 | DOI Listing |
Sci Total Environ
January 2025
Institut de Química Avançada de Catalunya (IQAC), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
The environmental persistence of organophosphate flame retardants (OPFRs) in water is becoming and environmental concern. White Rot Fungi (WRF) have proven its capability to degrade certain OPFRs such as tributyl phosphate (TBP), tris(2-butoxyethyl) phosphate (TBEP), tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloroisopropyl) phosphate (TCPP). Despite this capability, there is limited knowledge about the specific pathways involved in the degradation.
View Article and Find Full Text PDFMetabolites
November 2024
Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS, University Lyon, F-69367 Lyon, France.
Phosphatases are enzymes that catalyze the hydrolysis of phosphate esters. They play critical roles in diverse biological processes such as extracellular nucleotide homeostasis, transport of molecules across membranes, intracellular signaling pathways, or vertebrate mineralization. Among them, tissue-nonspecific alkaline phosphatase (TNAP) is today increasingly studied, due to its ubiquitous expression and its ability to dephosphorylate a very broad range of substrates and participate in several different biological functions.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science School of Medicine, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
Rheumatoid arthritis (RA) is a kind of inflammation homeostasis disorder that dysfunctions the joints. Clinically, medications against RA focus simply on mitigating the focal inflammation, without considering pro-osteogenesis re-modeling of the bone microenvironment. In the present work, 2D layered calcium disilicide nanoparticles (CSNs) are fabricated by facile aqueous exfoliation.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China.
2-O-α-Glucosylglycerol (GG) is a natural heteroside synthesized by many cyanobacteria and a few heterotrophic bacteria under salt stress conditions. Bacteria produce GG in response to stimuli and degrade it once the stimulus diminishes. Heterotrophic bacteria utilize GG phosphorylase (GGP), a member of the GH13_18 family, via a two-step process consisting of phosphorolysis and hydrolysis for GG catabolism.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119899, Russia. Electronic address:
Stress resistance-conferring membrane pyrophosphatase (mPPase) found in microbes and plants couples pyrophosphate hydrolysis with H transport out of the cytoplasm. There are two opposing views on the energy-coupling mechanism in this transporter: the pumping is associated with either pyrophosphate binding to mPPase or the hydrolysis step. We used our recently developed stopped-flow pyranine assay to measure H transport into mPPase-containing inverted membrane vesicles on the timescale of a single turnover.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!