A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. | LitMetric

Diabetic nephropathy involves a renal inflammatory response induced by the diabetic milieu. Macrophages accumulate in diabetic kidneys in association with the local upregulation of monocyte chemoattractant protein-1 (MCP-1); however, the contribution of macrophages to renal injury and the importance of MCP-1 to their accrual are unclear. Therefore, we examined the progression of streptozotocin (STZ)-induced diabetic nephropathy in mice deficient in MCP-1 in order to explore the role of MCP-1-mediated macrophage accumulation in the development of diabetic kidney damage. Renal pathology was examined at 2, 8, 12 and 18 weeks after STZ treatment in MCP-1 intact (+/+) and deficient (-/-) mice with equivalent blood glucose and hemoglobin A1c levels. In MCP-1(+/+) mice, the development of diabetic nephropathy was associated with increased kidney MCP-1 production, which occurred mostly in tubules, consistent with our in vitro finding that elements of the diabetic milieu (high glucose and advanced glycation end products) directly stimulate tubular MCP-1 secretion. Diabetes of 18 weeks resulted in albuminuria and elevated plasma creatinine in MCP-1(+/+) mice, but these aspects of renal injury were largely suppressed in MCP-1(-/-) mice. Protection from nephropathy in diabetic MCP-1(-/-) mice was associated with marked reductions in glomerular and interstitial macrophage accumulation, histological damage and renal fibrosis. Diabetic MCP-1(-/-) mice also had a smaller proportion of kidney macrophages expressing markers of activation (inducible nitric oxide synthase or sialoadhesin) compared to diabetic MCP-1(+/+) mice. In conclusion, our study demonstrates that MCP-1-mediated macrophage accumulation and activation plays a critical role in the development of STZ-induced mouse diabetic nephropathy.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.ki.5000014DOI Listing

Publication Analysis

Top Keywords

diabetic nephropathy
16
diabetic
12
development diabetic
12
renal injury
12
macrophage accumulation
12
mcp-1+/+ mice
12
mcp-1-/- mice
12
mice
9
monocyte chemoattractant
8
chemoattractant protein-1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!