Invariant natural killer T cells (iNKT cells) are a small subset of immunoregulatory T cells highly conserved in humans and mice. On activation by glycolipids presented by the MHC-like molecule CD1d, iNKT cells promptly secrete T helper 1 and 2 (Th1/2) cytokines but also cytokines with hematopoietic potential such as GM-CSF. Here, we show that the myeloid clonogenic potential of human hematopoietic progenitors is increased in the presence of glycolipid-activated, GM-CSF-secreting NKT cells; conversely, short- and long-term progenitor activity is decreased in the absence of NKT cells, implying regulation of hematopoiesis in both the presence and the absence of immune activation. In accordance with these findings, iNKT-cell-deficient mice display impaired hematopoiesis characterized by peripheral-blood cytopenias, reduced marrow cellularity, lower frequency of hematopoietic stem cells (HSCs), and reduced early and late hematopoietic progenitors. We also show that CD1d is expressed on human HSCs. CD1d-expressing HSCs display short- and long-term clonogenic potential and can present the glycolipid alpha-galactosylceramide to iNKT cells. Thus, iNKT cells emerge as the first subset of regulatory T cells that are required for effective hematopoiesis in both steady-state conditions and under conditions of immune activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood-2005-07-2804 | DOI Listing |
ACS Nano
January 2025
Wuya Faculty of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
Antidrug antibodies (ADAs) against biologics present a major challenge for sustained biotherapy, including enzyme replacement therapies and adeno-associated virus (AAV) gene therapies. These antibodies arise from undesirable immune responses, leading to altered pharmacokinetics, reduced efficacy, and adverse reactions. In this study, we introduced a rationally designed lipid-rapamycin (Rapa)-based nanovaccine to restore immune tolerance to biologics and overcome drug resistance.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Ophthalmology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
Objective: To explore the differential gene expression in peripheral blood immune cells of individuals with type 2 diabetes mellitus (DM), comparing those with and without non-proliferative diabetic retinopathy (NPDR).
Methods: From a pool of 126 potential participants, 60 were selected for detailed analysis. This group included 12 healthy donors (HDs), 22 individuals with DM, and 26 with NPDR.
J Transl Med
January 2025
Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
Cutaneous melanoma is one of the most aggressive skin cancers originating from skin pigment cells. Patients with advanced melanoma suffer a poor prognosis and generally cannot benefit well from surgical resection and chemo/target therapy due to metastasis and drug resistance. Thus, adoptive cell therapy (ACT), employing immune cells with specific tumor-recognizing receptors, has emerged as a promising therapeutic approach to display on-tumor toxicity.
View Article and Find Full Text PDFPharmacol Res
January 2025
Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. Electronic address:
Chimeric antigen receptor (CAR) T cells have encouraging results in the treatment of hematological malignancies. However, CAR-T therapy still faces numerous challenges against solid tumors, such as hepatocellular carcinoma (HCC), owing to heterogeneous antigen expression in tumor cells, limited persistence of CAR-T cells, etc. Therefore, to treat HCC more effectively, we connected the molecular receptor NKBB to a second-generation glypican-3 (GPC3) CAR to construct GC3328z-NKBB CAR-T cells, which have double specific targets of GPC3 and NKG2DLs (natural killer group 2, member D ligands), dual co-stimulation of CD28 and 41BB, and a single CD3ζ chain.
View Article and Find Full Text PDFCytometry A
January 2025
Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands.
We have developed a 37-color spectral flow cytometry panel to assess the phenotypical differentiation of innate and adaptive immune lymphoid subsets within human intestinal tissue. In addition to lineage markers for identifying innate lymphoid cells (ILC), TCRγδ, MAIT (mucosal-associated invariant T), natural killer (NK), CD4 and CD8 T cells, we incorporated markers of differentiation and activation (CD45RA, CD45RO, CD25, CD27, CD38, CD39, CD69, CD103, CD127, CD161, HLA-DR, CTLA-4 [CD152]), alongside transcription factors (Bcl-6, FoxP3, GATA-3, Helios, T-bet, PU.1 and RORγt) and chemokine receptors (CCR4, CCR6, CCR7, CXCR3, and CXCR5).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!