Amorphous nifedipine-PVP and phenobarbital-PVP solid dispersions with various drug contents were prepared by melting and subsequent rapid cooling of mixtures of PVP and nifedipine, or phenobarbital. Chemical shifts and spin-lattice relaxation times (T(1)) of PVP, nifedipine, and phenobarbital carbons were determined by (13)C-CP/MAS NMR to elucidate drug-PVP interactions and the localized molecular mobility of drug and PVP in the solid dispersions. The chemical shift of the PVP carbonyl carbon increased as the drug content increased, appearing to reach a plateau at a molar ratio of drug to PVP monomer unit of approximately 1:1, suggesting hydrogen bond interactions between the PVP carbonyl group and the drugs. T(1) of the PVP carbonyl carbon in the solid dispersions increased as the drug content increased, indicating that the mobility of the PVP carbonyl carbon was decreased by hydrogen bond interactions. T(1) of the drug carbons increased as the PVP content increased, and this increase in T(1) became less obvious when the molar ratio of PVP monomer unit to drug exceeded approximately 1:1. These results suggest that the localized motion of the PVP pyrrolidone ring and the drug molecules is reduced by hydrogen bond interactions. Decreases in localized mobility appear to be one of the factors that stabilize the amorphous state of drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.20545DOI Listing

Publication Analysis

Top Keywords

solid dispersions
16
pvp carbonyl
16
carbonyl carbon
12
content increased
12
hydrogen bond
12
bond interactions
12
pvp
11
molecular mobility
8
nifedipine-pvp phenobarbital-pvp
8
phenobarbital-pvp solid
8

Similar Publications

The determination of iodine after the enrichment on solid sorbent ZrO in the combination with molecular absorption spectrometric (MAS) detection is presented. The detection limit and enrichment factor obtained were 0.009 μg mL and 9, respectively.

View Article and Find Full Text PDF

Enhancing the decomposition rate of ammonium perchlorate (AP), the most common oxidizer in solid propellants, is important for improving propellant performance. Metal organic frameworks (MOFs) have been developed as key materials for catalyzing AP decomposition, as they can achieve good dispersion of active sites through in-situ decomposition. Despite having considerable potential, the structural transformation process and catalytic performance of MOFs in AP decomposition are still unclear, which seriously hinders their application in the field of AP decomposition.

View Article and Find Full Text PDF

High thermoelectric performance is generally achieved by synergistically optimizing two or even three of the contradictorily coupled thermoelectric parameters. Here we demonstrate magneto-thermoelectric correlation as a strategy to achieve simultaneous gain in an enhanced Seebeck coefficient and reduced thermal conductivity in topological materials. We report a large magneto-Seebeck effect and high magneto-thermoelectric figure of merit of 1.

View Article and Find Full Text PDF

Pharmaceutical nanosuspensions, also called nanocrystals, are heterogeneous mainly aqueous dispersions of insoluble drug particles stabilised by surfactants and/or polymers. Nanosuspensions as liquid formulations suffer from instability. Solidification of nanosuspensions to solid dosage forms is a way to combine the advantages of nanocrystals with the advantages of the solid state.

View Article and Find Full Text PDF

This study aims to use superparamagnetic iron oxide nanoparticles (SPIONs), specifically magnetite (FeO), to deliver deflazacort (DFZ) and ibuprofen (IBU) to Duchenne muscular dystrophy-affected (DMD) mouse muscles using an external magnetic field. The SPIONs are synthesized by the co-precipitation method, and their surfaces are functionalized with L-cysteine to anchor the drugs, considering that the cysteine on the surface of the SPIONs in the solid state dimerizes to form the cystine molecule, creating the FeO-(Cys)-DFZ and FeO-(Cys)-IBU systems for tests. The FeO nanoparticles (NPs) were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and magnetic measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!