Influence of oxygen concentration on redox cycling of alloxan and dialuric acid.

Horm Metab Res

Institute of Pathophysiology, Martin Luther University of Halle-Wittenberg, Ernst-Grube-Strasse 40, 06097 Halle (Saale), Germany.

Published: December 2005

Alloxan, a chemical diabetogen, decays in the absence of reductants into alloxanic acid. In the presence of glutathione, it is reduced via the alloxan radical into dialuric acid, which autoxidizes back to alloxan. During this redox cycling process, reactive oxygen species are formed that destroy beta-cells in islets of Langerhans. Previous experiments were conducted with oxygen concentrations about ten times as high as within cells. The aim of our in vitro study was to evaluate the impact of different oxygen concentrations (0, 25, 250 micromol/l) at a given initial ratio of glutathione and alloxan on this redox cycling. Reduction of alloxan, oxidation of glutathione, and the formation of glutathiol (GSSG) were continuously recorded by HPLC for 90 minutes at 25 degrees C in air, calibration gas, or argon. In the absence of reductants, alloxan irreversibly decomposed into alloxanic acid regardless of oxygen presence. When the reaction system contained glutathione, decomposition was significantly retarded and therefore influenced by oxygen. In argon, decay could not be observed due to its reduction and the absence of oxygen. Increasing oxygen concentration enabled a redox cycling and therefore an ongoing decay. The highest decomposition along with the highest consumption of glutathione occurred at 250 micromol/l oxygen. The lower the oxygen, the more dialuric acid could be detected. After calculation, about 33 redox cycles per hour generates an amount of reactive oxygen species sufficient to damage pancreatic beta cells and induce insulin deficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-2005-921093DOI Listing

Publication Analysis

Top Keywords

redox cycling
16
dialuric acid
12
oxygen
10
oxygen concentration
8
absence reductants
8
alloxanic acid
8
alloxan redox
8
reactive oxygen
8
oxygen species
8
oxygen concentrations
8

Similar Publications

Noncanonical inhibition of topoisomerase II alpha by oxidative stress metabolites.

Redox Biol

January 2025

University of Chicago, Department of Molecular Genetics and Cell Biology, 929 E. 57th Street, Chicago, IL, 60637, USA. Electronic address:

During its catalytic cycle, the homodimeric ATPase topoisomerase II alpha (TOP2A) cleaves double stranded DNA and remains covalently bound to 5' ends via tyrosine phosphodiester bonds. After passing a second, intact duplex through, TOP2A rejoins the break and releases from the DNA. Thereby, TOP2A can relieve strain accumulated during transcription, replication and chromatin remodeling and disentangle sister chromatids for mitosis.

View Article and Find Full Text PDF

Protons (H+) with the smallest size and fastest redox kinetics are regarded as competitive charge carriers in the booming Zn-organic batteries (ZOBs). Developing new H+-storage organic cathode materials with multiple ultralow-energy-barrier protophilic sites and super electron delocalization routes to propel superior ZOBs is crucial but still challenging. Here we design multiple protophilic redox-active reticular organic skeletons (ROSs) for activating better proton storage, triggered by intermolecular H-bonding and π-π stacking interactions between 2,6-diaminoanthraquinone and 2,4,6-triformylphloroglucinol nanofibrous polymer.

View Article and Find Full Text PDF

Energizing Robust Sulfur/Lithium Electrochemistry via Nanoscale-Asymmetric-Size Synergism.

J Am Chem Soc

January 2025

State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen 361005, China.

Sluggish redox kinetics and dendrite growth perplex the fulfillment of efficient electrochemistry in lithium-sulfur (Li-S) batteries. The complicated sulfur phase transformation and sulfur/lithium diversity kinetics necessitate an all-inclusive approach in catalyst design. Herein, a compatible mediator with nanoscale-asymmetric-size configuration by integrating Co single atoms and defective CoTe (Co-CoTe@NHCF) is elaborately developed for regulating sulfur/lithium electrochemistry synchronously.

View Article and Find Full Text PDF

Natural aging is associated with mild memory loss and cognitive decline, and age is the greatest risk factor for neurodegenerative diseases, such as Alzheimer's disease. There is substantial evidence that oxidative stress is a major contributor to both natural aging and neurodegenerative disease, and coincidently, levels of redox active metals such as Fe and Cu are known to be elevated later in life. Recently, a pronounced age-related increase in Cu content has been reported to occur in mice and rats around a vital regulatory brain region, the subventricular zone of lateral ventricles.

View Article and Find Full Text PDF

Characterization of the oxygen-tolerant formate dehydrogenase from .

Front Microbiol

January 2025

Department of Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany.

Fixation of CO into the organic compound formate by formate dehydrogenases (FDHs) is regarded as the oldest autotrophic process on Earth. It has been proposed that an FDH-dependent CO fixation module could support CO assimilation even in photoautotrophic organisms. In the present study, we characterized FDH from (FDH) due to its ability to reduce CO under aerobic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!