Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: To investigate the potential immunologic and anti-inflammatory effects of hypertonic saline plus dextran (HSD) in hemorrhagic trauma patients.
Background: Unbalanced inflammation triggered by shock has been linked to multiorgan dysfunction (MOD) and death. In animal and cellular models, HSD alters the inflammatory response to shock, attenuating MOD and improving outcome. It remains untested whether HSD has similar effects in humans.
Methods: A single 250-mL dose of either HSD (7.5% NaCl, 6% dextran-70) or placebo (0.9% NaCl) was administered to adult blunt trauma patients in hemorrhagic shock. The primary outcome was to measure changes in immune/inflammatory markers, including neutrophil activation, monocyte subset redistribution, cytokine production, and neuroendocrine changes. Patient demographics, fluid requirements, organ dysfunction, infection, and death were recorded.
Results: A total of 27 patients were enrolled (13 HSD) with no significant differences in clinical measurements. Hyperosmolarity was modest and transient, whereas the immunologic/anti-inflammatory effects persisted for 24 hours. HSD blunted neutrophil activation by abolishing shock-induced CD11b up-regulation and causing CD62L shedding. HSD altered the shock-induced monocyte redistribution pattern by reducing the drop in "classic" CD14 and the expansion of the "pro-inflammatory" CD14CD16 subsets. In parallel, HSD significantly reduced pro-inflammatory tumor necrosis factor (TNF)-alpha production while increasing anti-inflammatory IL-1ra and IL-10. HSD prevented shock-induced norepinephrine surge with no effect on adrenal steroids.
Conclusions: This first human trial evaluating the immunologic/anti-inflammatory effects of hypertonic resuscitation in trauma patients demonstrates that HSD promotes a more balanced inflammatory response to hemorrhagic shock, raising the possibility that similar to experimental models, HSD might also attenuate post-trauma MOD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1449974 | PMC |
http://dx.doi.org/10.1097/01.sla.0000193608.93127.b1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!