Single nucleotide polymorphisms in human P-glycoprotein: its impact on drug delivery and disposition.

Expert Opin Drug Deliv

College of Pharmacy, University of Southern Nevada, 11 Sunset Way, Henderson, NV 89014, USA.

Published: January 2006

Drug efflux pumps belong to a large family of ATP-binding cassette transporter proteins. These pumps bind their substrate and export it through the membrane using energy derived from ATP hydrolysis. P-glycoprotein, the main efflux pump in this family, is expressed not only in tumour cells but also in normal tissues with excretory function (liver, kidney and the intestine). It has a broad specificity of substrates and plays an important role in drug delivery and disposition. Recently, genetic screening of P-glycoprotein has yielded multiple single nucleotide polymorphisms, which seem to alter transporter function and expression. This review discusses the various polymorphisms of this gene and its impact on drug disposition and diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1517/17425247.3.1.23DOI Listing

Publication Analysis

Top Keywords

single nucleotide
8
nucleotide polymorphisms
8
impact drug
8
drug delivery
8
delivery disposition
8
polymorphisms human
4
human p-glycoprotein
4
p-glycoprotein impact
4
drug
4
disposition drug
4

Similar Publications

Molecular Epidemiology of Type F Among Diarrheal Patients and Virulence-Resistance Dynamics - 11 Provinces, China, 2024.

China CDC Wkly

January 2025

Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China.

Introduction: Type F () represents a significant pathogen in human gastrointestinal diseases, primarily through its gene encoding enterotoxin (CPE). This investigation examined the prevalence, antimicrobial resistance patterns, and genetic characteristics of Type F within the Chinese population.

Methods: The study analyzed 2,068 stool samples collected from 11 provincial hospitals in 2024.

View Article and Find Full Text PDF

Massive subcutaneous filariosis by in beech marten () in Italy.

Parasite Epidemiol Control

February 2025

Veterinary Medicine and Animal Production Department, Naples University, 8 Via Mezzocannone, 80138 Naples, Italy.

The beech marten () is a small-size mustelid endangered according to the IUCN Red List. Despite the plethora of parasites potentially affecting its population decline, subcutaneous filarioids are occasionally reported in martens and their competent arthropod vectors are to date unknown. Therefore, from January 2023 to August 2024, this study investigated the presence of subcutaneous filarioids and ectoparasites of road-killed beech martens ( = 7) from southwestern Italy.

View Article and Find Full Text PDF

Laryngeal squamous cell cancer (LSCC) is one of the most common head and neck cancers in which genetic factors play an important role in its occurrence. This study investigated the association of and gene polymorphisms with the risk of LSCC. polymorphisms including rs712, rs61764370, rs8720, and rs9266, as well as NRAS rs14804, were compared in the patient group (n=120) and the control group (n=100).

View Article and Find Full Text PDF

Background: Vitamin D receptor (VDR) gene polymorphisms have been implicated in polycystic ovary syndrome (PCOS). Despite VDR gene polymorphisms importance and their risk for PCOS, they have not been extensively studied. The main objective was to evaluate the associations between VDR gene polymorphisms and risk for PCOS.

View Article and Find Full Text PDF

Introduction: Optic disc drusen (ODD) are believed to have a genetic predisposition, with autosomal dominant inheritance pattern with incomplete penetrance suggested through family pedigree analysis. ODD prevalence is higher in certain genetic disorders, such as pseudoxanthoma elasticum and retinitis pigmentosa. This study aimed to identify candidate genes potentially involved in the development of ODD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!