We isolated a potyvirus from Tradescantia fluminensis that was causing leaf distortion and mild mosaic. We cloned and sequenced a 1500 bp cDNA obtained by RT-PCR corresponding to the 3' proximal region of the genome. We determined the host range and tested a series of potyviral antisera against our tradescantia virus isolate by immuno-enzymatic methods. Based on our results, we suggest that our viral isolate could be considered a new potyvirus species named Tradescantia mild mosaic potyvirus. Phylogenetic analysis confirmed that Tradescantia mild mosaic virus belongs to the genus Potyvirus within the family Potyviridae, but the virus could not be assigned to any of the potyvirus groupings recently defined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00705-005-0691-x | DOI Listing |
Arch Virol
January 2025
School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan.
Tulip mild mottle mosaic disease, caused by tulip mild mottle mosaic virus (TMMMV, species Ophiovirus tulipae), was first reported in Japan in 1979. TMMMV has a negative-sense ssRNA genome and is closely related to ophioviruses such as Mirafiori lettuce big vein virus (MLBVV, Ophiovirus mirafioriense). However, its complete nucleotide sequence has not yet been reported.
View Article and Find Full Text PDFEpilepsia Open
January 2025
Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.
Protein-activated kinases mediate spine morphogenesis and synaptic plasticity. PAK3 is part of the p21-activated kinases (PAKs) family of Ras-signaling serine/threonine kinases. Pathogenic variants in the X-linked gene PAK3 have been described in patients with neurodevelopmental syndromes.
View Article and Find Full Text PDFPlant Genome
March 2025
Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.
Winter barley (Hordeum vulgare) production areas in the middle and lower reaches of the Yangtze River are severely threatened by barley yellow mosaic disease, which is caused by Barley yellow mosaic virus and Barley mild mosaic virus. Improving barley disease resistance in breeding programs requires knowledge of genetic loci in germplasm resources. In this study, bulked segregant analysis (BSA) identified a novel major quantitative trait loci (QTL) QRym.
View Article and Find Full Text PDFZhonghua Yi Xue Yi Chuan Xue Za Zhi
January 2025
Department of Obstetrics and Gynecology, the Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.
Objective: To explore the genetic characteristics of a Chinese pedigree with rare mosaic 11q partial duplication and its pathogenetic mechanisms.
Methods: A pedigree which underwent prenatal diagnosis at Wenzhou Central Hospital between September 25, 2015 and November 30, 2023 was selected for the study. Clinical data were collected from the pedigree.
Int J Biol Macromol
January 2025
Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China. Electronic address:
Changes in critical sites of virus-encoded protein or cis-acting element generally determine pathogenicity differentiation among different isolates of the same plant virus. Cucumber mosaic virus (CMV) isolates, which exhibit the most extensively known host range, demonstrate notable pathogenicity differentiation. This study focuses on the severe isolate CMV and mild isolate CMV, both affecting several species within the Solanaceae family, to identify the key factors regulating pathogenicity differentiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!