Objective: Pressure-overload hypertrophy is associated with decreased capillary density in myocardium resulting in impaired substrate delivery. Treatment of hypertrophied hearts with vascular endothelial growth factor (VEGF) induces angiogenesis. Since angiogenesis is associated with extracellular matrix degradation, we sought to determine whether VEGF induced angiogenesis in hypertrophy required matrix metalloproteinases (MMP) activation.
Methods: Newborn rabbits underwent aortic banding. Progression of hypertrophy (mass-to-volume (M/V) ratio) and mid-wall contractility index was monitored by echocardiography. At 4 and 6 weeks, VEGF (2 microg/kg), vehicle or VEGF combined with GM6001 (5 mg/kg), a MMP inhibitor, was administered intrapericardially. CD-31 (indicator of angiogenesis), MMP-2, MT1-MMP and TIMPs (endogenous MMP inhibitors) expression were measured by immunoblotting. MMP-2 activity was determined by gelatin zymography.
Results: Untreated hypertrophied hearts progressed to ventricular dilatation at 7 wks (M/V ratio: 0.75 +/- 0.07), but compensatory hypertrophy was maintained with VEGF (0.91 +/- 0.07; p < 0.05). LV contractility declined in untreated hearts from -0.41 +/- 0.9 (5 wks) to -0.73 +/- 0.5 (7 wks; p < 0.05) but remained normal with VEGF (+1.61 +/- 0.6 vs. +0.47 +/- 0.2). MMP-2 expression and activity were significantly elevated in VEGF treated hypertrophied hearts (p < 0.05) and were blocked by concomitant administration of GM6001. VEGF induced neovascularization was inhibited by addition of GM6001. MT1-MMP showed a trend to higher levels in VEGF treated hearts. TIMPs were unchanged in all three groups.
Conclusions: Exogenous VEGF and resultant MMP-2 activation leads to increased capillary formation in severe hypertrophy, preventing progression to ventricular dilation and dysfunction. VEGF and the associated MMP-2 activation play an important and potentially therapeutic role in vascular remodeling of hypertrophied hearts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3444246 | PMC |
http://dx.doi.org/10.1007/s00395-005-0581-0 | DOI Listing |
Sports (Basel)
January 2025
Exercise and Sport Sciences Department, Metropolitan State University of Denver, Denver, CO 80204, USA.
Background: High-intensity endurance training induces specific cardiac adaptations, often observed through electrocardiographic (ECG) changes. This study investigated the prevalence of ECG abnormalities in national-level Australian triathletes compared to sedentary controls.
Methods: A cross-sectional observational study was conducted involving 22 triathletes and 7 sedentary controls.
Discov Med
January 2025
Faculty of Medicine, Institute of Anatomy, University of Belgrade, 11000 Belgrade, Serbia.
Two billion people worldwide suffer from anemia, which can lead to the onset of cardiac disorders; nevertheless, the precise mechanisms remain unclear. There are at least three distinct mechanisms by which iron deficiency (ID) contributes to the development of cardiac disorders. First, ID increases concentrations of intact fibroblast growth factor-23 (iFGF-23), which promotes left ventricular hypertrophy.
View Article and Find Full Text PDFCurr Vasc Pharmacol
January 2025
Department for Cardiovascular Diseases, Institute of Cardiovascular diseases Sremska Kamenica, Sremska Kamenica, Serbia.
Background: Among the organ damage mediated by hypertension, cardiac lesions hold significant importance. Numerous authors focus on hypertensive heart disease (HHD) rather than exclusively on left ventricular hypertrophy (LVH).
Objective: This narrative review aims to assess the incorporation of the concept of 'hypertensive heart disease' (HHD) in hypertension (HTN) guidelines.
Front Endocrinol (Lausanne)
January 2025
Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China.
Cardiac hypertrophy is an adaptive response to pressure or volume overload such as hypertension and ischemic heart diseases. Sustained cardiac hypertrophy eventually leads to heart failure. The pathophysiological alterations of hypertrophy are complex, involving both cellular and molecular systems.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
Objectives: The close relationship of proto-oncogenes to myocardial hypertrophy has long been recognized, and cardiac hypertrophy leads to heart failure (HF). However, whether proviral insertion of Moloney virus 3 kinase (Pim3), a proto-oncogene, contributes to cardiac hypertrophy in diabetes mellitus (DM) remains unknown. This study aims to investigate whether Pim3 is involved in DM-induced cardiac hypertrophy and HF and to elucidate its underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!