Construction and immunological characterization of a novel nontoxic protective pneumolysin mutant for use in future pneumococcal vaccines.

Infect Immun

Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.

Published: January 2006

Pneumolysin, the pore-forming toxin produced by Streptococcus pneumoniae, may have an application as an immunogenic carrier protein in future pneumococcal conjugate vaccines. Most of the 90 S. pneumoniae serotypes identified produce pneumolysin; therefore, this protein may confer non-serotype-specific protection against pneumococcal infections such as pneumonia, meningitis, and otitis media. However, as pneumolysin is highly toxic, a nontoxic form of pneumolysin would be a more desirable starting point in terms of vaccine production. Previous pneumolysin mutants have reduced activity but retain residual toxicity. We have found a single amino acid deletion that blocks pore formation, resulting in a form of pneumolysin that is unable to form large oligomeric ring structures. This mutant is nontoxic at concentrations greater than 1,000 times that of the native toxin. We have demonstrated that this mutant is as immunogenic as native pneumolysin without the associated effects such as production of the inflammatory mediators interleukin-6 and cytokine-induced neutrophil chemoattractant KC, damage to lung integrity, and hypothermia in mice. Vaccination with this mutant protects mice from challenge with S. pneumoniae. Incorporation of this mutant pneumolysin into current pneumococcal vaccines may increase their efficacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1346677PMC
http://dx.doi.org/10.1128/IAI.74.1.586-593.2006DOI Listing

Publication Analysis

Top Keywords

pneumolysin
9
future pneumococcal
8
pneumococcal vaccines
8
form pneumolysin
8
mutant
5
construction immunological
4
immunological characterization
4
characterization novel
4
novel nontoxic
4
nontoxic protective
4

Similar Publications

Streptococcus pneumoniae (Sp; pneumococcus), the most common agent of community-acquired pneumonia, can spread systemically, particularly in the elderly, highlighting the need for adjunctive therapies. The airway epithelial barrier defends against bacteremia and is dependent upon apical junctional complex (AJC) proteins such as E-cadherin. After mouse lung challenge, pneumolysin (PLY), a key Sp virulence factor, stimulates epithelial secretion of an inflammatory eicosanoid, triggering the infiltration of polymorphonuclear leukocytes (PMNs) that secrete high levels of neutrophil elastase (NE), thus promoting epithelial damage and systemic infection.

View Article and Find Full Text PDF

Aim Of The Study: Exploring the potential of glycyrol to reduce the invasiveness of ().

Materials And Methods: Cell experiments were performed using A549 alveolar epithelial cells and D39. Glycyrol was added to A549 cells mixed with or without Pneumolysin (PLY) to detect the effect of Glycyrol on PLY toxicity.

View Article and Find Full Text PDF

Using chromosomal barcoding, we observed that >97% of the Streptococcus pneumoniae (Spn) population turns over in the lung within 2 days post-inoculation in a murine model. This marked collapse of diversity and bacterial turnover was associated with acute inflammation (severe pneumococcal pneumonia), high bacterial numbers in the lungs, bacteremia, and mortality. Intra-strain competition mediated by the blp locus, which expresses bacteriocins in a quorum-sensing-dependent manner, was required for each of these effects.

View Article and Find Full Text PDF

Background: Bacterial pneumonia is most prevalent among all pneumonia types, with Streptococcus pneumoniae being the main pathogen. Qingfei Yin (QFY) is a traditional Chinese medicine formula used in the clinical treatment of bacterial pneumonia. Previous studies have confirmed the multi-target and -effect characteristics of QFY in treating S.

View Article and Find Full Text PDF

Membrane proteins tend to be difficult to study since they need to be integrated into a lipid bilayer membrane to function properly. This study presents a method to synthesize a macroscopically large and freely transportable membrane with integrated membrane proteins which is useful for studying membrane proteins and protein complexes in isolation. The method could serve as a blueprint for the production of larger quantities of functionalised membranes for integration into technical devices similar to the MinION DNA sequencer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!