AI Article Synopsis

  • The NKG2D receptor on NK and CD8 T cells enhances the effectiveness of a survivin-based DNA vaccine by boosting both innate and adaptive antitumor immune responses.
  • Depleting specific T cell types during vaccine priming affects the activation and function of dendritic cells and NK cells, highlighting the importance of different immune cell interactions.
  • The pH60/Survivin vaccine increases the number of DCs and NK cells while decreasing CD4 T cell presence in Peyer patches, adjusting the immune environment to favor NK cell activation and T cell priming.

Article Abstract

The NKG2D receptor is a stimulatory receptor expressed on NK cells and activated CD8 T cells. We previously demonstrated that engaging the NKG2D receptor markedly improved the efficacy of a survivin-based DNA vaccine. The combination vaccine, encoding both the NKG2D ligand H60 and survivin, activates innate and adaptive antitumor immunity and results in better protection against tumors of different origin and NKG2D expression levels. Here we demonstrate that the enhanced vaccine efficacy is in part attributable to increased cross talk between lymphocytes. Depletion of CD8 T cells during priming reduces the vaccine-induced activation of dendritic cells (DCs) and NK cell activity. Depletion of NK cells during priming leads to reduced DC activation and CTL activity. However, depletion of CD4 T cells results in the activation of DCs, NK cells, and CD8 T cells and enhances NK cell activity. The pH60/Survivin vaccine also increases DCs and NK cells but decreases CD4 T cell homing to Peyer patches, presumably as a result of changes in the homing receptor profile. Thus, by preferentially activating and attracting positive regulators and reducing negative regulators in Peyer patches, this dual-function DNA vaccine induces a microenvironment more suitable for NK cell activation and T cell priming.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1895756PMC
http://dx.doi.org/10.1182/blood-2005-10-4231DOI Listing

Publication Analysis

Top Keywords

nkg2d receptor
12
cd8 cells
12
cells
9
cross talk
8
engaging nkg2d
8
dna vaccine
8
cells priming
8
cell activity
8
activity depletion
8
dcs cells
8

Similar Publications

No biomarker can effectively screen for early gastric cancer (EGC). Players in the A disintegrin and metalloproteinase (ADAM)-natural killer group 2 member D (NKG2D) receptor axis may have a role for that. As a proof-of-concept pilot study, the expression of ADAM8, ADAM9, ADAM10, ADAM12, ADAM17, and major histocompatibility complex (MHC) class I chain-related sequence A (MICA), a ligand for NKG2D, in gastric cancer was investigated in silico using The Cancer Genome Atlas (TCGA) database.

View Article and Find Full Text PDF

Natural killer (NK) cells are essential elements of the innate immune response against tumors and viral infections. NK cell activation is governed by NK cell receptors that recognize both cellular (self) and viral (non-self) ligands, including MHC, MHC-related, and non-MHC molecules. These diverse receptors belong to two distinct structural families, the C-type lectin superfamily and the immunoglobulin superfamily.

View Article and Find Full Text PDF

Exosomal miR-552-5p Regulates the Role of NK Cells in EMT of Gastric Cancer via the PD-1/PD-L1 Axis.

J Cancer

January 2025

Department of Gastroenterology and Respiratory Internal Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China.

While previous studies have established the role of exosomal miR-552-5p in promoting gastric cancer (GC) progression, the exact mechanisms through which it modulates the PD-1/PD-L1 axis to affect NK cell function and subsequently influence GC epithelial-mesenchymal transition (EMT) remain to be elucidated. Western blot, transmission electron microscopy (TEM), and nanoparticle tracking analysis were used to characterize exosomes that were isolated from GC cell supernatants. Subcutaneous AGS cell injections expressing either Lv-miR-552-5p or Lv-NC were administered to nude BALB/C mice.

View Article and Find Full Text PDF

Pluripotent stem cells provide opportunities for treating injuries and previously incurable diseases. A major concern is the immunogenicity of stem cells and their progeny. Here, we have dissected the molecular mechanisms that allow natural killer (NK) cells to respond to human pluripotent stem cells, investigating a wide selection of activating and inhibitory NK cell receptors and their ligands.

View Article and Find Full Text PDF

Characterization of the Bone Marrow Lymphoid Microenvironment and Discovery of Prognostic Immune-Related Factors in Acute Myeloid Leukemia.

Int J Mol Sci

December 2024

Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.

Given the limited comprehensive data on the bone marrow (BM) immune environment in acute myeloid leukemia (AML), we analyzed the distribution and phenotype of T cell subsets, including γδ T cells, and their immune checkpoint (IC) ligands on blasts. We performed multiparametric flow cytometry with BM samples taken from 89 AML patients at the time of diagnosis, remission, and relapse/refractory status after chemotherapy and 13 healthy controls (HCs) to identify immune-related risk factors. Compared to the HCs, the T cells of the AML patients exhibited exhausted features including higher TIGIT levels and similar levels of PD-1 and TIM-3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!