Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that heterodimerize with the retinoid X receptor and then modulate at the transcriptional level the function of many target genes. Three PPARs are known: alpha, beta (sometimes called delta), and gamma. The better studied are PPARalpha and PPARgamma, which are activated by fibrates and thiazolidinediones/glitazones, respectively. It is now believed that activation of the PPARs could be associated with the prevention of heart attack and stroke in humans. Here we report, for the first time, that human platelets contain PPARbeta and that its selective activation inhibits platelet aggregation. PPARbeta is a putative receptor for prostacyclin. Prostacyclin is an important antithrombotic hormone that synergizes with nitric oxide to inhibit platelet aggregation. In the current study, we show that PPARbeta ligands similarly synergize with nitric oxide to inhibit platelet aggregation. These observations challenge our view of a nuclear receptor because PPARbeta is present and active in nonnucleated platelets. Furthermore, these data suggest that some of the antithrombotic actions of prostacyclin may be mediated via activation of PPARs. Thus, our results identify PPARbeta as a novel antiplatelet target that may mediate some of the effects of prostacyclin in blood.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.05-4395fje | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!