Background: Minichromosome maintenance (MCM) proteins are essential for the initiation of DNA replication and have been found to be relevant markers for prognosis in a variety of tumours. The aim of this study was to assess the proliferative activity of diffuse large B-cell lymphoma (DLBCL) in tissue microarray (TMA) using one of the minichromosome maintenance proteins (Mcm2) and to explore its potential value to predict prognosis.

Methods: Immunohistochemistry for Mcm2 was performed on TMAs constructed from 302 cases of DLBCL. A monoclonal mouse antibody was used after heat induced antigen retrieval. Mcm2 expression was scored quantitatively. Positivity for Mcm2 was defined as presence of nuclear expression of Mcm2 in greater than or equal to 40 % of tumour cells. A statistical analysis was carried out of the association of Mcm2 and the clinico-pathological characteristics.

Results: Mcm2 expression was clearly evident in the nuclei of proliferating non-neoplastic cells and tumour cells. Positivity for Mcm2 was found in 46% (98/211) of analysable cases. A significant correlation existed between Mcm2 expression and presence of bulky disease (p = 0.003). Poor disease specific survival was observed in patients with DLBCL positive for Mcm2 expression in the univariate analysis (p = 0.0424).

Conclusion: Mcm2 expression can be used to assess tumour proliferation and may be useful as an additional prognostic marker to refine the prediction of outcome in DLBCL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1343577PMC
http://dx.doi.org/10.1186/1471-2407-5-162DOI Listing

Publication Analysis

Top Keywords

mcm2 expression
20
minichromosome maintenance
12
mcm2
11
diffuse large
8
large b-cell
8
b-cell lymphoma
8
tissue microarray
8
positivity mcm2
8
tumour cells
8
expression
7

Similar Publications

Background: Clear cell renal cell carcinoma (ccRCC) is the most common malignant urological tumor, and regrettably, and is insensitive to chemotherapy and radiotherapy, resulting in poor patient outcomes. DBF4 plays a critical role in DNA replication and participates in various biological functions, making it an attractive target for cancer treatment. However, its significance in ccRCC has not yet been explored.

View Article and Find Full Text PDF

Transcriptome analysis reveals the DNA replication genes response to Vibrio anguillarum and NNV infection in Jinhu grouper (Epinephelus fuscoguttatus♀ × Epinephelus tukulal♂).

Comp Biochem Physiol Part D Genomics Proteomics

January 2025

Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.

Vibrio anguillarum acts as an infectious agent in the aquaculture industry that causes a fatal hemolytic septicaemic disease in fish and shellfish. Viral nervous necrosis (VNN) disease seriously impacts the healthy development of the aquaculture industry. While the detrimental effects of V.

View Article and Find Full Text PDF

Functional Analysis and Experimental Validation of the Prognostic and Immune Effects of the Oncogenic Protein CDC45 in Breast Cancer.

Breast Cancer (Dove Med Press)

January 2025

The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China.

Purpose: Cell division cycle protein 45 (CDC45) plays a crucial role in DNA replication. This study investigates its role in breast cancer (BC) and its impact on tumor progression.

Methods: We utilized the GEO database to screen differentially expressed genes (DEGs) and conducted enrichment analysis on these genes.

View Article and Find Full Text PDF

FUS-mediated alternative splicing and METTL3-regulated RNA methylation play crucial roles in RNA processing. The purpose of this study was to investigate the interactive roles of FUS and METTL3 in gastric cancer (GC) progression. RNA sequencing data were obtained from the TCGA-STAD dataset.

View Article and Find Full Text PDF

Loss of function of VCP/TER94 causes neurodegeneration.

Dis Model Mech

December 2024

Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan.

Article Synopsis
  • Mutations in certain genes are associated with frontotemporal lobar degeneration (FTLD), but whether these mutations lead to gain or loss of function is still debated.
  • Research using Drosophila flies showed that knocking down the TER94 gene, similar to the human gene VCP/p97, resulted in severe health issues like early death and changes in brain structure, which were not restored by a known mutant version of the gene.
  • The study implies that the issues caused by TER94 knockdown are due to loss-of-function effects, particularly affecting cell proliferation and leading to the loss of another protein, TBPH, from cell nuclei.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!