Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Since copper (Cu) is essential in key physiological oxidation reactions, organisms have developed strategies for handling Cu while avoiding its potentially toxic effects. Among the tools that have evolved to cope with Cu is a network of Cu homeostasis factors such as Cu-transporting P-type ATPases that play a key role in transmembrane Cu transport. In this work we present the functional characterization of an Arabidopsis Cu-transporting P-type ATPase, denoted heavy metal ATPase 5 (HMA5), and its interaction with Arabidopsis metallochaperones. HMA5 is primarily expressed in roots, and is strongly and specifically induced by Cu in whole plants. We have identified and characterized plants carrying two independent T-DNA insertion alleles, hma5-1 and hma5-2. Both mutants are hypersensitive to Cu but not to other metals such as iron, zinc or cadmium. Interestingly, root tips from Cu-treated hma5 mutants exhibit a wave-like phenotype at early stages and later on main root growth completely arrests whereas lateral roots emerge near the crown. Accordingly, these lines accumulate Cu in roots to a greater extent than wild-type plants under Cu excess. Finally, yeast two-hybrid experiments demonstrate that the metal-binding domains of HMA5 interact with Arabidopsis ATX1-like Cu chaperones, and suggest a regulatory role for the plant-specific domain of the CCH Cu chaperone. Based on these findings, we propose a role for HMA5 in Cu compartmentalization and detoxification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-313X.2005.02601.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!