Calculations on the hydrates, dimer, and trimer of phosphoric acid were carried out in an effort to obtain a viable model of the phosphorus NMR chemical shielding in 85% phosphoric acid solution. The theoretical approaches used the gauge-including-atomic-orbital (GIAO) 6-311+G(nd,p) basis set at both scaled density functional theory (sB3LYP) and estimated infinite order Møller-Plesset (EMPI) approaches and with the aug-cc-pvtz basis in the sB3LYP approach. Shieldings and hydrogen bonding stabilization energies are similar in the three approaches and indicate that the faster sB3LYP/6-311+G(nd,p) approach can be used with larger systems. The changes in shielding compared to the isolated species are small and suggest that the undissociated acid dihydrate could serve as a model entity for modeling the phosphorus shielding in concentrated phosphoric acid solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp0555910 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!