In this paper we present a theoretical framework for novelty based feedback regulation in artificial neural networks. Novelty is assessed on the basis of monitoring the coherence of network dynamics. The result of novelty detection is dynamically coupled to parameters that control the dynamics of the recognition process. The paper presents a new measure of novelty detection--the strength of the local field--and presents new simulation results concerning novelty detection. It also integrates previously published models and simulation results into a general dynamical model of feedback regulation.

Download full-text PDF

Source
http://dx.doi.org/10.55782/ane-2005-1574DOI Listing

Publication Analysis

Top Keywords

feedback regulation
12
novelty based
8
based feedback
8
regulation artificial
8
artificial neural
8
neural networks
8
novelty detection
8
novelty
6
networks paper
4
paper theoretical
4

Similar Publications

Background: The COVID-19 pandemic has highlighted the need for more effective immunization programs, including in limited resource settings. This paper presents outcomes and lessons learnt from a COVID-19 vaccination campaign (VC), which used a tailored adaptive strategy to optimise vaccine uptake in the Boeny region of Madagascar.

Methods: Guided by the Dynamic Sustainability Framework (DSF), the VC implementation was regularly reviewed through multi-sectoral stakeholder feedback, key informant interviews, problem-solving meetings, and weekly monitoring of outcome indicators to identify and apply key adaptations.

View Article and Find Full Text PDF

Proper differentiation of bone marrow stromal cells (BMSCs) into adipocytes is crucial for maintaining skeletal homeostasis. However, the underlying regulatory mechanisms remain incompletely understood, posing a challenge for the treatment of age-related osteopenia and osteoporosis. Here, through comprehensive gene expression analysis during BMSC differentiation into adipocytes, we identified the forkhead transcription factor Foxk2 as a key regulator of this process.

View Article and Find Full Text PDF

Neuroendocrine cells react to physical, chemical, and synaptic signals originating from tissues and the nervous system, releasing hormones that regulate various body functions beyond the synapse. Neuroendocrine cells are often embedded in complex tissues making direct tests of their activation mechanisms and signaling effects difficult to study. In the nematode worm , four uterine-vulval (uv1) neuroendocrine cells sit above the vulval canal next to the egg-laying circuit, releasing tyramine and neuropeptides that feedback to inhibit egg laying.

View Article and Find Full Text PDF

Structure-switchable branched inhibitors regulate the activity of CRISPR-Cas12a for nucleic acid diagnostics.

Anal Chim Acta

January 2025

Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, People's Republic of China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, People's Republic of China; Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, People's Republic of China. Electronic address:

Background: In current years, the CRISPR (clustered regularly interspaced short palindromic repeats) based strategies have emerged as the most promising molecular tool in the field of gene editing, intracellular imaging, transcriptional regulation and biosensing. However, the recent CRISPR-based diagnostic technologies still require the incorporation of other amplification strategies (such as polymerase chain reaction) to improve the cis/trans cleavage activity of Cas12a, which complicates the detection workflow and lack of a uniform compatible system to respond to the target in one pot.

Results: To better fully-functioning CRISPR/Cas12a, we reported a novel technique for straightforward nucleic acid detection by incorporating enzyme-responsive steric hindrance-based branched inhibitors with CRISPR/AsCas12a methodology.

View Article and Find Full Text PDF

Progress in biology has generated numerous lists of genes that share some property. But advancing from these lists of genes to understanding their roles is slow and unsystematic. Here we use RNA silencing in Caenorhabditis elegans to illustrate an approach for prioritizing genes for detailed study given limited resources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!