NO produced by inducible NO synthase (NOS2) is important for the control of numerous infections. In vitro, NO inhibits replication and differentiation of the intestinal protozoan parasite Giardia lamblia. However, the role of NO against this parasite has not been tested in vivo. IL-6-deficient mice fail to control Giardia infections, and these mice have reduced levels of NOS2 mRNA in the small intestine after infection compared with wild-type mice. However, NOS2 gene-targeted mice and wild-type mice treated with the NOS2 inhibitor N-iminoethyl-L-lysine eliminated parasites as well as control mice. In contrast, neuronal NOS (NOS1)-deficient mice and wild-type mice treated with the nonspecific NOS inhibitor NG-nitro-L-arginine methyl ester and the NOS1-specific inhibitor 7-nitroindazole all had delayed parasite clearance. Finally, Giardia infection increased gastrointestinal motility in wild-type mice, but not in SCID mice. Furthermore, treatment of wild-type mice with NG-nitro-L-arginine methyl ester or loperamide prevented both the increased motility and the elimination of parasites. Together, these data show that NOS1, but not NOS2, is necessary for clearance of Giardia infection. They also suggest that increased gastrointestinal motility contributes to elimination of the parasite and may also contribute to parasite-induced diarrhea. Importantly, this is the first example of NOS1 being involved in the elimination of an infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2585514 | PMC |
http://dx.doi.org/10.4049/jimmunol.176.1.516 | DOI Listing |
Fluids Barriers CNS
January 2025
Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, O&N II Herestraat 49 box 820, 3000, Leuven, Belgium.
Background: Therapeutic antibodies for the treatment of neurological disease show great potential, but their applications are rather limited due to limited brain exposure. The most well-studied approach to enhance brain influx of protein therapeutics, is receptor-mediated transcytosis (RMT) by targeting nutrient receptors to shuttle protein therapeutics over the blood-brain barrier (BBB) along with their endogenous cargos. While higher brain exposure is achieved with RMT, the timeframe is short due to rather fast brain clearance.
View Article and Find Full Text PDFNat Commun
January 2025
Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia.
Cas12a is a next-generation gene editing tool that enables multiplexed gene targeting. Here, we present a mouse model that constitutively expresses enhanced Acidaminococcus sp. Cas12a (enAsCas12a) linked to an mCherry fluorescent reporter.
View Article and Find Full Text PDFDiabetologia
January 2025
Kidney Transplantation Center, Department of Urology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
Aims/hypothesis: Diabetic kidney disease (DKD) features intrarenal inflammation, in which T cells play a part. Hypoxia-inducible factor-1α (HIF-1α), a key transcription factor regulating cellular responses to hypoxia, is reportedly involved in the course of inflammation. The role of HIF-1α in DKD has been investigated, but the conclusions are controversial so far.
View Article and Find Full Text PDFExp Eye Res
January 2025
Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040 Guangdong, China. Electronic address:
Usher syndrome is a rare autosomal recessive genetic disorder that primarily affects both vision and hearing, manifesting as sensorineural hearing loss and progressive vision loss caused by retinitis pigmentosa. The pathogenesis of retinal degeneration in Usher syndrome is still largely unknown. In this study, a novel Ush2a knockout mouse model was successfully constructed using CRISPR/Cas9 technology.
View Article and Find Full Text PDFMicrovasc Res
January 2025
University of South Florida, Morsani College of Medicine, James A Haley Veterans' Hospital, United States of America. Electronic address:
Intestinal ischemia-reperfusion (I/R) injury occurs under various surgical or disease conditions, where tissue hypoxia followed by reoxygenation results in the production of oxygen radicals and inflammatory mediators. These substances can target the endothelial barrier, leading to microvascular leakage. In this study, we induced intestinal I/R injury in mice by occluding the superior mesenteric artery, followed by removing the clamp to resume blood circulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!