Deletion of and novel missense mutation in POU3F4 in 2 families segregating X-linked nonsyndromic deafness.

Arch Otolaryngol Head Neck Surg

Molecular Otolaryngology Research Laboratories, Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City 52242, USA.

Published: December 2005

Objective: To analyze the physical manifestations and genetic features of 2 families segregating X-linked deafness, which is most commonly reported to be caused by mutations of the POU domain gene POU3F4 at the DFN3 locus.

Design: Computed tomographic study of the temporal bone in probands from each family, followed by mutation screening and deletion mapping of POU3F4 in family members.

Setting: Two midwestern genetics clinics.

Participants: Two families with X-linked deafness.

Main Outcome Measures: Anomalies of the inner ear in the probands; results of gene mapping and severity and effects of hearing loss in the family members.

Results: In the first family, a large deletion was identified that includes POU3F4 and extends upstream approximately 530 kilobases; in the second family, a novel serine-to-leucine (S228L) amino acid mutation was identified in the POU-specific domain of POU3F4. Both the deletion and the missense mutation segregate with the clinical phenotype and are causally related to the deafness in these families.

Conclusions: Deafness related to the POU3F4 gene is associated with dilation of the internal auditory canal and a spectrum of other temporal bone anomalies that range in severity from mild to severe dysplasia of the cochlea and semicircular canals. The consequence of these anomalies is a congenital mixed hearing loss, the sensorineural component of which progresses over time. Affected males can also present with vestibular dysfunction that is associated with delayed developmental motor milestones. Intrafamilial variability occurs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6775642PMC
http://dx.doi.org/10.1001/archotol.131.12.1057DOI Listing

Publication Analysis

Top Keywords

missense mutation
8
families segregating
8
segregating x-linked
8
temporal bone
8
hearing loss
8
pou3f4
6
family
5
deletion
4
deletion novel
4
novel missense
4

Similar Publications

Article Synopsis
  • Researchers have identified genetic polymorphisms of ABI3 as a risk factor for late-onset Alzheimer's Disease (LOAD), but the role of ABI3 in microglia is not well understood.
  • Using CRISPR/Cas9, a specific risk variant (S212F) was introduced into mouse models to study its effects on AD-related pathologies alongside 5xFAD mice over time.
  • Results showed that the 5xFAD/Abi3 mice exhibited a decrease in amyloid beta plaque burden and a significant reduction in microglia numbers with age, suggesting ABI3 may influence both plaque formation and microglial response in AD pathology.
View Article and Find Full Text PDF

Background: A complex, multicellular disease with genetic and immunological elements, Alzheimer's disease (AD) affects millions worldwide. There has been previous research linking AD to the missense variants ABI3-rs616338-T and PLCG2-rs72824905-G, and the altered expression of these genes has been shown to disrupt microglial function. In our understanding of AD risk and resilience, limited research has been conducted on how these variants affect microglial subtypes and states in AD.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

John P. Hussman Institute for Human Genomics, Miller School of Medicine, Miami, FL, USA.

Background: We identified the missense variant Ser1038Cys (rs377155188) in the tetratricopeptide repeat domain 3 (TTC3) gene that segregate in a non-Hispanic white late onset Alzheimer disease (LOAD) family. This variant is predicted to be deleterious and extremely rare (MAF<0.01%).

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Amsterdam UMC location VUmc, Amsterdam, Noord-holland, Netherlands.

Background: SORL1 encodes the retromer-associated receptor SORLA that functions in endosomal recycling. Rare variants in SORL1 have been associated with Alzheimer's disease (AD) and rare pathogenic variants are estimated to occur in up to 2.75% of early onset AD patients and in 1.

View Article and Find Full Text PDF

Background: The sortilin-related receptor 1 protein, SORL1, interacts with retromer to regulate trafficking of cargo out of the early endosome. Genetic variants in SORL1 that lead to a premature protein truncation (PTVs) are observed almost exclusively in Alzheimer's disease (AD) patients, suggesting SORL1's haploinsufficiency may be causal for AD. However, the large majority of SORL1 variants are rare missense variants which affect diverse structural domains, some of which may be causative for disease or (strongly) risk-increasing, while others are (likely) benign.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!