Isothiocyanates have been shown to be potent inhibitors of carcinogenesis in animals exposed to a number of chemical carcinogens including the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). In this study the effects of benzyl isothiocyanate (BITC) and phenethyl isothiocyanate (PEITC), two naturally occuring isothiocyanates, on P450 2A6 and 2A13 were investigated. P450s 2A6 and 2A13 are thought to be the primary human P450 enzymes responsible for the in vivo metabolism of nicotine and NNK, respectively. In vitro, BITC and PEITC efficiently inhibited P450 2A6- and 2A13-mediated coumarin 7-hydroxylation. The inhibition of P450 2A6 and 2A13 by BITC was non-competitive with KI's of 4.1 and 1.3 microM, respectively. PEITC was a more potent inhibitor of both enzymes than BITC, with a KI of 0.37 microM for P450 2A6 and 0.03 microM for P450 2A13. P450 2A6-mediated metabolism of nicotine and P450 2A13-mediated alpha-hydroxylation of NNK were also inhibited significantly by these two isothiocyanates. Both BITC and PEITC were able to inactivate P450 2A6 and 2A13 in an NADPH-dependent manner potentially through the formation of adducts to the apoprotein. The potent inhibition of P450 2A6- and 2A13-mediated metabolisms together with the ability of BITC and PEITC to inactivate the enzymes suggests the possibility that these isothiocyanates could be developed as chemopreventive agents to protect smokers who are unwilling or unable to quit smoking against lung cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/bgi301DOI Listing

Publication Analysis

Top Keywords

2a6 2a13
20
p450 2a6
16
bitc peitc
12
p450
10
effects benzyl
8
phenethyl isothiocyanate
8
p450s 2a6
8
metabolism nicotine
8
p450 2a6-
8
2a6- 2a13-mediated
8

Similar Publications

Metabolism-dependent mutagenicity of two structurally similar tobacco-specific nitrosamines (N-nitrosonornicotine and N-nitrosoanabasine) in human cells, partially different CYPs being activating enzymes.

Toxicology

May 2024

Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China. Electronic address:

N-nitrosonornicotine (NNN) and N-nitrosoanabasine (NAB) are both tobacco-specific nitrosamines bearing two heterocyclic amino groups, NAB bearing an extra -CH- group (conferring a hexa- rather than penta-membered cycle) but with significantly decreased carcinogenicity. However, their activating enzymes and related mutagenicity remain unclear. In this study, the chemical-CYP interaction was analyzed by molecular docking, thus the binding energies and conformations of NNN for human CYP2A6, 2A13, 2B6, 2E1 and 3A4 appeared appropriate as a substrate, so did NAB for human CYP1B1, 2A6, 2A13 and 2E1.

View Article and Find Full Text PDF

As a potential means for smoking cessation and consequently prevention of smoking-related diseases and mortality, in this study, our goal was to investigate the inhibition of nicotine metabolism by P450 2A6. Smoking is the main cause of many diseases and disabilities and harms nearly every organ of the body. As reported by the Centers for Disease Control and Prevention (CDC), more than 16 million Americans are living with diseases caused by smoking.

View Article and Find Full Text PDF

Aim: In this study, our goal was to study the inhibition of nicotine metabolism by P450 2A6, as a means for reduction in tobacco use and consequently the prevention of smoking-related cancers. Nicotine, a phytochemical, is an addictive stimulant, responsible for the tobacco-dependence in smokers. Many of the other phytochemicals in tobacco, including polycyclic aromatic hydrocarbons, N-nitrosamines, and aromatic amines, are potent systemic carcinogens.

View Article and Find Full Text PDF

As an abundantly present tobacco component, carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) has also been detected in atmospheric particulate matter, suggesting the ineluctable exposure risk of this contaminant. NNK metabolic activation by cytochrome P450 enzymes (CYPs) is a prerequisite to exerting its genotoxicity, but the metabolic regioselectivity and mechanism are still unknown. Here the binding feature and regioselectivity of CYPs 1A1, 1A2, 2A6, 2A13, 2B6, and 3A4 toward NNK are unraveled through molecular docking and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Humans possess three cytochrome P450 enzymes in the 2A subfamily (2A6, 2A7, and 2A13). P450 2A13 is mainly expressed in the human trachea and lung, whereas P450 2A6 is found in human liver. The P450 2A13 enzyme may be considered as the primary enzyme responsible for metabolic activation of many tobacco-specific carcinogens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!