The amygdala is under inhibitory control from the cortex through the activation of local GABAergic interneurons. This inhibition is greatly diminished during heightened emotional states due to dopamine release. However, dopamine excites most amygdala interneurons, suggesting that this dopaminergic gate may be mediated by an unknown subpopulation of interneurons. We hypothesized that this gate is mediated by paracapsular intercalated cells, a subset of interneurons that are innervated by both cortical and mesolimbic dopaminergic afferents. Using transgenic mice that express GFP in GABAergic interneurons, we show that paracapsular cells form a network surrounding the basolateral complex of the amygdala. We found that they provide feedforward inhibition into the basolateral and the central amygdala. Dopamine hyperpolarized paracapsular cells through D1 receptors and substantially suppressed their excitability, resulting in a disinhibition of the basolateral and central nuclei. Suppression of the paracapsular system by dopamine provides a compelling neural mechanism for the increased affective behavior observed during stress or other hyperdopaminergic states.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2005.10.029DOI Listing

Publication Analysis

Top Keywords

gabaergic interneurons
8
gate mediated
8
paracapsular cells
8
basolateral central
8
interneurons
6
amygdala
5
specialized subclass
4
subclass interneurons
4
interneurons mediates
4
mediates dopaminergic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!