Variation of single-trial P300 responses was studied both in relation to reaction times and to the preceding stimulus sequence in an auditory oddball paradigm. Single-trial responses were estimated with the Subspace regularization method that is based on Bayesian estimation and linear modeling. The results of the single-trial method were compared to those of averaging. Both methods showed that the latency of the P300 was shorter and its amplitude larger for faster than slower reaction times. The P300 latency was shorter for target tones that were preceded by a large number of standard tones compared to those preceded by a small number of standard tones. The P300 amplitude was statistically significantly affected by the stimulus sequence only when analyzed with conventional averaging. In-depth analysis of standard deviations showed that the variability of the P300 single-trial latencies could explain the differences between the two methods. Specifically, the regression analysis showed that the latency correlated negatively with the number of preceding standard tones and positively with the reaction time, whereas the P300 amplitude correlated positively with the number of the preceding standard stimuli and negatively with the reaction time. The analysis of the single-trial responses gives information about the behavior of the P300 component that is lost with conventional averaging. The method used in this study is independent of subjective decision making and can be used to model changes in the dynamical behavior of the P300 component objectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpsycho.2005.10.015 | DOI Listing |
Sensors (Basel)
December 2024
Psychology Department, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
Consumer-grade EEG devices, such as the InteraXon Muse 2 headband, present a promising opportunity to enhance the accessibility and inclusivity of neuroscience research. However, their effectiveness in capturing language-related ERP components, such as the N400, remains underexplored. This study thus aimed to investigate the feasibility of using the Muse 2 to measure the N400 effect in a semantic relatedness judgment task.
View Article and Find Full Text PDFJ Neurodev Disord
January 2025
Graduate Neuroscience Program, University of California, Riverside, CA, USA.
Background: Fragile X syndrome (FXS) is a leading known genetic cause of intellectual disability and autism spectrum disorders (ASD)-associated behaviors. A consistent and debilitating phenotype of FXS is auditory hypersensitivity that may lead to delayed language and high anxiety. Consistent with findings in FXS human studies, the mouse model of FXS, the Fmr1 knock out (KO) mouse, shows auditory hypersensitivity and temporal processing deficits.
View Article and Find Full Text PDFJ Neuroeng Rehabil
December 2024
Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium.
Background: The loss of finger control in individuals with neuromuscular disorders significantly impacts their quality of life. Electroencephalography (EEG)-based brain-computer interfaces that actuate neuroprostheses directly via decoded motor intentions can help restore lost finger mobility. However, the extent to which finger movements exhibit distinct and decodable EEG correlates remains unresolved.
View Article and Find Full Text PDFCereb Cortex
December 2024
Instituto de Investigaciones Biológicas Clemente Estable, Department of Integrative and Computational Neurosciences, Av. Italia 3318, Montevideo, 11.600, Uruguay.
A social scene is particularly informative when people are distinguishable. To understand somebody amid a "cocktail party" chatter, we automatically index their voice. This ability is underpinned by parallel processing of vocal spectral contours from speech sounds, but it has not yet been established how this occurs in the brain's cortex.
View Article and Find Full Text PDFBrain Sci
November 2024
Interdisciplinary Ph.D. Program in Literacy Studies, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!