Hypothalamic neurons that produce the peptide transmitters hypocretins/orexins have attracted much recent attention. They provide direct and predominantly excitatory inputs to all major brain areas except the cerebellum, with the net effect of stimulating wakefulness and arousal. These inputs are essential for generating sustained wakefulness in mammals, and defects in hypocretin signalling result in narcolepsy. In addition, new roles for hypocretins/orexins are emerging in reward-seeking, learning, and memory. Recent studies also indicate that hypocretin/orexin neurons can alter their intrinsic electrical activity according to ambient fluctuations in the levels of nutrients and appetite-regulating hormones. These intriguing electrical responses are perhaps the strongest candidates to date for the elusive neural correlates of after-meal sleepiness and hunger-induced wakefulness. Hypocretin/orexin neurons may thus directly translate rises and falls in body energy levels into different states of consciousness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6740127 | PMC |
http://dx.doi.org/10.1111/j.1582-4934.2005.tb00380.x | DOI Listing |
Alcohol use disorder (AUD) is characterized by compulsive alcohol consumption and negative emotional states during withdrawal, often perpetuating a cycle of addiction through arousal dysfunction. The hypocretin/orexin (Hcrt) neuropeptide system, a key regulator of arousal, has been implicated in these processes, particularly in its interactions with corticotropin-releasing factor (CRF) neurons within the bed nucleus of the stria terminalis (BNST). We investigated the role of Hcrt receptor signaling in CRF neurons in modulating alcohol intake, anxiety behaviors, and BNST excitability, with a focus on sex-specific differences.
View Article and Find Full Text PDFJ Neurochem
January 2025
The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.
Fear-related psychopathologies, such as post-traumatic stress disorder, are linked to dysfunction in neural circuits that govern fear memory and arousal. The lateral hypothalamus (LH) and zona incerta (ZI) regulate fear, but our understanding of the precise neural circuits and cell types involved remains limited. Here, we examined the role of relaxin family peptide receptor 3 (RXFP3) expressing cells in the LH/ZI in conditioned fear expression and general arousal in male RXFP3-Cre mice.
View Article and Find Full Text PDFJ Neurosci
September 2024
The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 590002, Israel
Brain nuclei are traditionally defined by their anatomy, activity, and expression of specific markers. The hypothalamus contains discrete neuronal populations that coordinate fundamental behavioral functions, including sleep and wakefulness, in all vertebrates. Particularly, the diverse roles of hypocretin/orexin (Hcrt)-releasing neurons suggest functional heterogeneity among Hcrt neurons.
View Article and Find Full Text PDFNat Neurosci
September 2024
Neurobehavioural Dynamics Laboratory, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich, Schwerzenbach, Switzerland.
Despite the well-known health benefits of physical activity, many people underexercise; what drives the prioritization of exercise over alternative options is unclear. We developed a task that enabled us to study how mice freely and rapidly alternate between wheel running and other voluntary activities, such as eating palatable food. When multiple alternatives were available, mice chose to spend a substantial amount of time wheel running without any extrinsic reward and maintained this behavior even when palatable food was added as an option.
View Article and Find Full Text PDFPsychopharmacology (Berl)
October 2024
Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.
Rationale: Motivation and inhibitory control are dominantly regulated by the dopaminergic (DA) and noradrenergic (NA) systems, respectively. Hypothalamic hypocretin (orexin) neurons provide afferent inputs to DA and NA nuclei and hypocretin-1 receptors (HcrtR1) are implicated in reward and addiction. However, the role of the HcrtR1 in inhibitory control is not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!