This fluorous biphasic catalysis (FBC) contribution was focused on the synthesis and characterization of new fluorous soluble R(f)-Cu(II) carboxylate complexes containing nonfluoroponytailed ligands and defines their role as precatalysts for the FBC oxidation of alkenols and alcohols in the presence of 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO)/O(2). In this FBC approach, we have utilized the phase-switching technique of Vincent et al. (J. Am. Chem. Soc. 2002, 124, 12942) to solubilize the nonfluoroponytailed ligands, N-1,4,7-Me(3)TACN, 2, and N-1,4,7-pentamethyldiethylenetriamine (PMDETA), 3, by reaction with a fluorous solvent-soluble copper (II) dimeric complex, [Cu({C(8)F(17)(CH(2))(2)}(2)CHCO(2))(2)](2), 1. Moreover, the reaction of nonfluoroponytailed ligands 2 and 3 with 1 afforded new perfluoroheptane-soluble Cu(II) complexes, [Cu({C(8)F(17)(CH(2))(2)}(2)CHCO(2))(2)(2)], 4, and [Cu({C(8)F(17)(CH(2))(2)}(2)CHCO(2))(2) (3)], 5, respectively. The known Cu(II) complex, 1, was further characterized by electron paramagnetic resonance (EPR) spectroscopy confirming its dimeric structure, while 4 and 5 were characterized by elemental analysis, IR, diffuse reflectance UV-vis, and EPR spectroscopy. Furthermore, 1, 4, and 5 were evaluated as precatalysts for alkenol and alcohol oxidation. The oxidation reactions of alkenols and alcohols in the presence of TEMPO/O(2) proceeded under FBC conditions for 1, 4, and 5, but 1-octanol was unreactive under single-phase FBC conditions at 90 degrees C with TEMPO/O(2). The thermomorphic property of 5, soluble in chlorobenzene/toluene at 90 degrees C but insoluble at room temperature, was also evaluated in the selective oxidation of p-nitrobenzyl alcohol to p-nitrobenzaldehyde. Plausible mechanisms concerning these FBC/thermomorphic oxidation reactions will be discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic051220m | DOI Listing |
J Am Chem Soc
November 2024
Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States.
J Phys Chem A
June 2024
Department of Chemistry, Faculty of Chemistry, "Alexandru Ioan Cuza" University of Iasi, 11 Carol I, 700506 Iasi, Romania.
Five biogenic unsaturated alcohols have been investigated under simulated atmospheric conditions regarding their gas-phase OH reactivity. The gas-phase rate coefficients of OH radicals with 2-methyl-3-buten-2-ol (), 3-methyl-2-buten-1-ol (), 3-methyl-3-buten-1-ol (), 2-methyl-3-buten-1-ol (), and 3-methyl-3-buten-2-ol () at 298 ± 2 K and 1000 ± 10 mbar total pressure of synthetic air were determined under low- and high-NO conditions using the relative kinetic technique. The present work provides for the first time the rate coefficients of gas-phase reactions of hydroxyl radicals with 2-methyl-3-buten-1-ol and 3-methyl-3-buten-2-ol.
View Article and Find Full Text PDFJ Am Chem Soc
February 2024
The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
Despite half a century's advance in the field of transition-metal-catalyzed asymmetric alkene hydrogenation, the enantioselective hydrogenation of purely alkyl-substituted 1,1-dialkylethenes has remained an unmet challenge. Herein, we describe a chiral PCN-pincer iridium complex for asymmetric transfer hydrogenation of this alkene class with ethanol, furnishing all-alkyl-substituted tertiary stereocenters. High levels of enantioselectivity can be achieved in the reactions of substrates with secondary/primary and primary/primary alkyl combinations.
View Article and Find Full Text PDFOrg Lett
July 2023
The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
Asymmetric transfer hydrogenation of 1-aryl-1-alkylethenes with ethanol was developed with a chiral (PCN)Ir complex as the precatalyst, featuring high enantioselectivities, good functional group tolerance, and operational simplicity. The method is further applied to formal intramolecular asymmetric transfer hydrogenation of alkenols without an external H-donor, producing a tertiary stereocenter and remote ketone group simultaneously. The utility of the catalytic system was highlighted by gram scale synthesis and the synthesis of the key precursor of ()-xanthorrhizol.
View Article and Find Full Text PDFJ Am Chem Soc
June 2023
Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States.
Alkene aminooxygenation and dioxygenation reactions that result in carbonyl products are uncommon, and protocols that control absolute stereochemistry are rare. We report herein catalytic enantioselective alkene aminooxygenation and dioxygenation that directly provide enantioenriched 2-formyl saturated heterocycles under aerobic conditions. Cyclization of substituted 4-pentenylsulfonamides, catalyzed by readily available chiral copper complexes and employing molecular oxygen as both oxygen source and stoichiometric oxidant, directly provides chiral 2-formyl pyrrolidines efficiently.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!