A detailed study of the electronic structure of seven-coordinate Mn(II), Co(II), and Ni(II) complexes with the lariat ether N,N'-bis(2-aminobenzyl)-1,10-diaza-15-crown-5 (L(1)) is presented. These complexes represent new examples of structurally characterized seven-coordinate (pentagonal bipyramidal) complexes for the Mn(II), Co(II), and Ni(II) ions. The X-ray crystal structures of the Mn(II) and Co(II) complexes show C(2) symmetries for the [M(L(1))](2+) cations, whereas the structures of the Ni(II) complexes show a more distorted coordination environment. The magnetic properties of the Mn(II) complex display a characteristic Curie law, whereas those of the Co(II) and Ni(II) ions show the occurrence of zero-field splitting of the S = 3/2 and 1 ground states, respectively. Geometry optimizations of the [M(L(1))](2+) systems (M = Mn, Co, or Ni) at the DFT (B3LYP) level of theory provide theoretical structures in good agreement with the experimental data. Electronic structure calculations predict a similar ordering of the metal-based beta spin frontier MO for the Mn(II) and Co(II) complexes. This particular ordering of the frontier MO leads to a pseudodegenerate ground state for the d(8) Ni(II) ion. The distortion of the C(2) symmetry in [Ni(L(1))](2+) is consistent with a Jahn-Teller effect that removes this pseudodegeneracy. Our electronic structure calculations predict that the binding strength of L(1) should follow the trend Co(II) approximately Mn(II) > Ni(II), in agreement with experimental data obtained from spectrophotometric titrations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic051119hDOI Listing

Publication Analysis

Top Keywords

electronic structure
16
mnii coii
16
coii niii
12
niii complexes
8
niii ions
8
coii complexes
8
agreement experimental
8
experimental data
8
structure calculations
8
calculations predict
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!