DNA methylation/demethylation of donor genomes in recipient ooplasm after nuclear transfer occurs in a species-specific way. In cloned rabbit and bovine embryos, repetitive sequences maintain the donor-type methylation status, but typical demethylation of repetitive sequences takes place in cloned porcine embryos. To clarify whether the demethylation is controlled by donor nucleus intrinsic property or by recipient ooplasm, we used interspecies somatic cell nuclear transfer (iSCNT) model to examine the methylation status of repetitive sequences in pig-to-rabbit and rabbit-to-pig interspecies embryos. We found that no demethylation of pig repetitive sequences was observed in pig-to-rabbit iSCNT embryos, while the examined rabbit repetitive sequence Rsat IIE was demethylated in rabbit-to-pig iSCNT embryos. These results indicate that demethylation of donor repetitive sequences is determined by ooplasm but not by donor intrinsic property and that ooplasm from different species have different capabilities to demethylate genes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrd.20421DOI Listing

Publication Analysis

Top Keywords

repetitive sequences
24
nuclear transfer
12
recipient ooplasm
12
intrinsic property
12
sequences determined
8
ooplasm donor
8
donor intrinsic
8
methylation status
8
iscnt embryos
8
repetitive
7

Similar Publications

Transposon exonization generates new protein-coding sequences.

Mol Cell

January 2025

State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China. Electronic address:

In a recent issue of Cell, Arribas et al. and Pasquesi et al. explore the phenomenon of transposable element (TE) exonization and its impact on proteomic and immune diversity, highlighting its potential role as a driver of evolutionary innovation.

View Article and Find Full Text PDF

Transcriptional coupling of telomeric retrotransposons with the cell cycle.

Sci Adv

January 2025

Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA.

Unlike most species that use telomerase for telomere maintenance, many dipterans, including , rely on three telomere-specific retrotransposons (TRs)-, , and -to form tandem repeats at chromosome ends. Although TR transcription is crucial in their life cycle, its regulation remains poorly understood. This study identifies the Mediator complex, E2F1-Dp, and Scalloped/dTEAD as key regulators of TR transcription.

View Article and Find Full Text PDF

Rice (Oryza sativa ) is a crucial staple crop worldwide, providing nutrition to more than half of the global population. Nonetheless, the sustainability of grain production is increasingly jeopardized by both biotic and abiotic stressors exacerbated by climate change, which increases the crop's rvulnerability to pests and diseases. Genome-editing by clustered regularly interspaced short palindromic repeats and CRISPR-associated Protein 9 (CRISPR-Cas9) presents a potential solution for enhancing rice productivity and resilience under climatic stress.

View Article and Find Full Text PDF

IDO1 inhibitor enhances the effectiveness of PD-1 blockade in microsatellite stable colorectal cancer by promoting macrophage pro-inflammatory phenotype polarization.

Cancer Immunol Immunother

January 2025

State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.

Microsatellite stable (MSS) colorectal cancer (CRC) is a subtype of CRC that generally exhibits resistance to immunotherapy, particularly immune checkpoint inhibitors such as PD-1 blockade. This study investigates the effects and underlying mechanisms of combining PD-1 blockade with IDO1 inhibition in MSS CRC. Bioinformatics analyses of TCGA-COAD and TCGA-READ cohorts revealed significantly elevated IDO1 expression in CRC tumors, correlating with tumor mutation burden across TCGA datasets.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Amsterdam UMC, Amsterdam, Netherlands.

Background: The TMEM106B protein is critical for proper functioning of the endolysomal system, which is utilised by all cells to traffic and degrade molecular cargo. Genome-wide association studies identified a haplotype in the TMEM106B gene that is associated with increased risk for Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal lobar degeneration with TAR DNA binding protein inclusions (FTLD-TDP). However, the causal variant that drives the association has thus far remained elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!