The effect of electrostimulation of fast (EDL) and slow (SOL) rat muscles on the orientation and mobility of fluorescent probes rhodamine-phalloidine and 1.5-IAEDANS (N-iodoacetyl-N'-(5-sulpho-1-naphtyl)-ethylenediamine), located in various parts of actin molecule, has been studied by polarized microfluorimetry techniques. Muscles were stimulated at 20 Hz with the pulse width of 0.3 msec, some muscles were treated for 6 h during the first day, the other muscles for 6 h a day during the next 4 days before glycerinization. Then muscle fibres freed by the extraction of myosin, tropomyosin and troponin (ghost fibres) were used. It was shown that the binding of myosin subfragment 1 (S1) to actin induced the changes in polarized fluorescence of the fibres. The analysis of the obtained data showed that the formation of actomyosin complex in stimulated muscles resulted in increasing the angle between the thin filaments and the emission dipole of rhodamine-phalloidine, as well as in decreasing the mobility of this dye. In the experiments with the 1.5-IAEDANS label, the angle of the emission dipole decreased, while the label mobility increased. It was suggested that the orientation of domains in actomyosin complex changes following the electrostimulation to affect both the conformational state of F-actin in thin filaments of ghost fibres and actin-myosin interaction.

Download full-text PDF

Source

Publication Analysis

Top Keywords

thin filaments
12
filaments ghost
8
ghost fibres
8
actomyosin complex
8
emission dipole
8
muscles
6
[the functional
4
functional electrostimulation
4
electrostimulation rat
4
rat fast
4

Similar Publications

The synthesis of polyferrocenyldimethylsilane-b-poly(L-glutamic acid) block copolymers was systematically explored. Rod-like and plate-like micelles were prepared from self-assembly of the block copolymers in aqueous solution with two different approaches. In a dissolution-dialysis approach, micelles were prepared by dissolving a block copolymer sample in excess aqueous base followed by the dialysis of the solution against water.

View Article and Find Full Text PDF

Fiber-based artificial muscles are soft actuators used to mimic the movement of human muscles. However, using high modulus oxide ceramics to fabricate artificial muscles with high energy and power is a challenge as they are prone to brittle fracture during torsion. Here, a ceramic metallization strategy is reported that solves the problem of low torsion and low ductility of alumina (AlO) ceramics by chemical plating a thin copper layer on alumina filaments.

View Article and Find Full Text PDF

Calcium binding to troponin triggers the contraction of skeletal and heart muscle through structural changes in the thin filaments that allow myosin motors from the thick filaments to bind to actin and drive filament sliding. Here, we review studies in which those changes were determined in demembranated fibres of skeletal and heart muscle using fluorescence for in situ structure (FISS), which determines domain orientations using polarised fluorescence from bifunctional rhodamine attached to cysteine pairs in the target domain. We describe the changes in the orientations of the N-terminal lobe of troponin C (TnC) and the troponin IT arm in skeletal and cardiac muscle cells associated with contraction and compare the orientations with those determined in isolated cardiac thin filaments by cryo-electron microscopy.

View Article and Find Full Text PDF

The role of fluid friction in streamer formation and biofilm growth.

NPJ Biofilms Microbiomes

January 2025

FLOW, Department of Engineering Mechanics, KTH, Stockholm, Sweden.

Biofilms constitute one of the most common forms of living matter, playing an increasingly important role in technology, health, and ecology. While it is well established that biofilm growth and morphology are highly dependent on the external flow environment, the precise role of fluid friction has remained elusive. We grew Bacillus subtilis biofilms on flat surfaces of a channel in a laminar flow at wall shear stresses spanning one order of magnitude (τ = 0.

View Article and Find Full Text PDF

Protein-based biomaterials are in high demand due to their high biocompatibility, non-toxicity, and biodegradability. In this study, we explore the bacterial secreted protein A (EspA), which self-assembles into long extracellular filaments, as a potential building block for new protein-based biomaterials. We investigated the morphological and mechanical properties of EspA filaments and how protein engineering can modify them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!