The Drosophila melanogaster circadian clock is generated by interlocked feedback loops, and null mutations in core genes such as period and timeless generate behavioral arrhythmicity in constant darkness. In light-dark cycles, the elevation in locomotor activity that usually anticipates the light on or off signals is severely compromised in these mutants. Light transduction pathways mediated by the rhodopsins and the dedicated circadian blue light photoreceptor cryptochrome are also critical in providing the circadian clock with entraining light signals from the environment. The cry(b) mutation reduces the light sensitivity of the fly's clock, yet locomotor activity rhythms in constant darkness or light-dark cycles are relatively normal, because the rhodopsins compensate for the lack of cryptochrome function. Remarkably, when we combined a period-null mutation with cry(b), circadian rhythmicity in locomotor behavior in light-dark cycles, as measured by a number of different criteria, was restored. This effect was significantly reduced in timeless-null mutant backgrounds. Circadian rhythmicity in constant darkness was not restored, and TIM protein did not exhibit oscillations in level or localize to the nuclei of brain neurons known to be essential for circadian locomotor activity. Therefore, we have uncovered residual rhythmicity in the absence of period gene function that may be mediated by a previously undescribed period-independent role for timeless in the Drosophila circadian pacemaker. Although we do not yet have a molecular correlate for these apparently iconoclastic observations, we provide a systems explanation for these results based on differential sensitivities of subsets of circadian pacemaker neurons to light.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1323156PMC
http://dx.doi.org/10.1073/pnas.0505392102DOI Listing

Publication Analysis

Top Keywords

circadian rhythmicity
12
constant darkness
12
light-dark cycles
12
locomotor activity
12
circadian
9
circadian clock
8
darkness light-dark
8
light signals
8
circadian pacemaker
8
light
6

Similar Publications

The application of regenerative therapy through stem cell transplantation has emerged as a promising avenue for the treatment of diabetes mellitus (DM). Transplanted tissue homeostasis is affected by disturbances in the clock genes of stem cells. The aim of this study is to investigate the diurnal variation in mitochondrial genes and function after transplantation of adipose-derived mesenchymal stem cells (T2DM-ADSCs) from type 2 diabetic patients into immunodeficient mice.

View Article and Find Full Text PDF

Daily Lipolysis Gene Expression in Male Rat Mesenteric Adipose Tissue: Obesity and Melatonin Effects.

Int J Mol Sci

January 2025

Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain.

Melatonin is involved in various functions such as the timing of circadian rhythms, energy metabolism, and body mass gain in experimental animals. However, its effects on adipose tissue lipid metabolism are still unclear. This study analyzes the effects of melatonin on the relative gene expression of lipolytic proteins in rat mesenteric adipose tissue and free fatty acid (FFA) and glycerol plasma levels of male Wistar rats fed a high-fat (HFD) or maintenance diet.

View Article and Find Full Text PDF

Circadian misalignment, due to shiftwork and/or individual chronotype and/or social jetlag (SJL), quantified as the difference between internal and social timing, may contribute to cardiovascular disease. Markers of endothelial dysfunction and activation of the coagulation system may predict cardiovascular pathology. The present study aim was to investigate the effects of shift work, SJL, and chronotype on endothelial function and coagulation parameters.

View Article and Find Full Text PDF

Acute kidney injury (AKI) and chronic kidney disease (CKD) represent two frequently observed clinical conditions. AKI is characterized by an abrupt decrease in glomerular filtration rate (GFR), generally associated with elevated serum creatinine (sCr), blood urea nitrogen (BUN), and electrolyte imbalances. This condition usually persists for approximately a week, causing a transient reduction in kidney function.

View Article and Find Full Text PDF

Hippocampal transcriptome analysis in ClockΔ19 mice identifies pathways associated with glial cell differentiation and myelination.

J Affect Disord

January 2025

Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China. Electronic address:

Background: ClockΔ19 mice demonstrate behavioral characteristics and neurobiological changes that closely resemble those observed in bipolar disorder (BD). Notably, abnormalities in the hippocampus have been observed in patients with BD, yet direct molecular investigation of human hippocampal tissue remains challenging due to its limited accessibility.

Methods: To model BD, ClockΔ19 mice were employed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!