Critical elements of oligosaccharide acceptor substrates for the Pasteurella multocida hyaluronan synthase.

J Biol Chem

Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA.

Published: March 2006

Three-dimensional structures are not available for polysaccharide synthases and only minimal information on the molecular basis for catalysis is known. The Pasteurella multocida hyaluronan synthase (PmHAS) catalyzes the polymerization of the alternating beta1,3-N-acetylglucosamine-beta1,4-glucuronic acid sugar chain by the sequential addition of single monosaccharides to the non-reducing terminus. Therefore, PmHAS possesses both GlcNAc-transferase and glucuronic acid (GlcUA)-transferase activities. The recombinant Escherichia coli-derived PmHAS enzyme will elongate exogenously supplied hyaluronan chains in vitro with either a single monosaccharide or a long chain depending on the UDP-sugar availability. Competition studies using pairs of acceptors with distinct termini (where one oligosaccharide is a substrate that may be elongated, whereas the other cannot) were performed here; the lack of competition suggests that PmHAS contains at least two distinct acceptor sites. We hypothesize that the size of the acceptor binding pockets of the enzyme corresponds to the size of the smallest high efficiency substrates; thus we tested the relative activity of a series of authentic hyaluronan oligosaccharides and related structural analogs. The GlcUA-transferase site readily elongates (GlcNAc-GlcUA)(2), whereas the GlcNAc-transferase elongates GlcUA-Glc-NAc-GlcUA. The minimally sized oligosaccharides, elongated with high efficiency, both contain a trisaccharide with two glucuronic acid residues that enabled the identification of a synthetic, artificial acceptor for the synthase. PmHAS behaves as a fusion of two complete glycosyltransferases, each containing a donor site and an acceptor site, in one polypeptide. Overall, this information advances the knowledge of glycosaminoglycan biosynthesis as well as assists the creation of various therapeutic sugars for medical applications in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M510439200DOI Listing

Publication Analysis

Top Keywords

pasteurella multocida
8
multocida hyaluronan
8
hyaluronan synthase
8
synthase pmhas
8
glucuronic acid
8
high efficiency
8
acceptor
5
pmhas
5
critical elements
4
elements oligosaccharide
4

Similar Publications

This study evaluated the minimum inhibitory concentration (MIC) of pradofloxacin against various swine respiratory pathogens, including , , , , and (), associated with disease in swine. This research was conducted in two phases: the initial phase examined isolates from the lungs that could be either commensal or pathogenic, while the second phase focused on systemic strains that spread from the respiratory tract to the brain. The pradofloxacin MIC values of the second phase were within the MIC range of the initial phase, with MIC and MIC values highlighting its potential as an effective antimicrobial agent.

View Article and Find Full Text PDF

Protective effects of 18β-glycyrrhetinic acid on -induced vascular inflammatory injury in mice.

Front Vet Sci

January 2025

Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China.

(Pm) is a widespread zoonotic pathogen with the ability to infect wild animals, livestock, and humans. Pm infection can cause haemorrhagic pneumonia, indicating that the pathogenesis involves serious vascular injury and inflammation. 18β-Glycyrrhetinic acid (GA) has cardiovascular protective and anti-inflammatory effects, but its effect on vascular injury caused by Pm infection is not clear.

View Article and Find Full Text PDF

Corrigendum to "Biosynthesis and regulation mechanisms of the Pasteurella multocida capsule" [Res Vet Sci. 127 (2019):82-90/ Doi: 10.1016/j.rvsc.2019.10.011].

Res Vet Sci

January 2025

Laboratory of Veterinary Biologics Engineering, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China. Electronic address:

View Article and Find Full Text PDF

Developing an effective vaccine for haemorrhagic septicaemia (HS) in cattle and buffaloes is urgently needed. While preferred for their safety, achieving sufficient, cross-protective, and long-lasting immunity is still challenging when administering inactivated vaccines. This study aimed to assess the efficacy of four inactivating components comprising three inactivating agents: (1) Binary ethylenimine (BEI), (2) Formalin, (3) a combination of BEI and Formalin, and (4) Hydrogen peroxide (HO), in inactivating Pasteurella multocida to enhance HS vaccine potency.

View Article and Find Full Text PDF

is a facultative anaerobic Gram-negative coccobacillus that represents a rare cause of systemic infection in immunocompromised patients. This report presents the case of a 59-year-old man with advanced squamous cell carcinoma of the oesophagus, recently undergoing radiotherapy and chemotherapy, halted due to cytopenias, including neutropenia. The patient, who owned a cat but denied any recent bites or scratches, developed bacteremia caused by with presumed pulmonary and renal foci.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!