Cognitive deficits affecting memory, attention and speed of information processing are common in multiple sclerosis (MS). The mechanisms of cognitive impairment remain unclear. Here, we examined the association between neuropsychological test performance and brain atrophy in a group of mildly disabled patients with relapsing-remitting MS. We applied voxel-based morphometry (SPM2) to investigate the distribution of brain atrophy in relation to cognitive performance. Patients had lower scores than control subjects on tests of memory and executive function, including the PASAT, Digit Span Backward and a test of short-term verbal memory (Memo). Among patients, but not healthy controls, performance on the PASAT, a comprehensive measure of cognitive function and reference task for the cognitive evaluation of MS-patients, correlated with global grey matter volume as well as with grey matter volume in regions associated with working memory and executive function, including bilateral prefrontal cortex, precentral gyrus and superior parietal cortex as well as right cerebellum. Compared to healthy subjects, patients showed a volume reduction in left temporal and prefrontal cortex, recently identified as areas predominantly affected by diffuse brain atrophy in MS. A comparison of low performers in the patient group with their matched control subjects showed more extensive and bilateral temporal and frontal volume reductions as well as bilateral parietal volume loss, compatible with the progression of atrophy found in more advanced MS-patients. These findings indicate that MS-related deficits in cognition are closely associated with cortical atrophy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2005.10.032DOI Listing

Publication Analysis

Top Keywords

brain atrophy
12
cortical atrophy
8
cognitive impairment
8
control subjects
8
memory executive
8
executive function
8
function including
8
grey matter
8
matter volume
8
prefrontal cortex
8

Similar Publications

Introduction: Alzheimer's disease (AD) patients with higher educational attainment (EA) often exhibit better cognitive function. However, the relationship among EA status, AD pathology, structural brain reserve, and cognitive decline requires further investigation.

Methods: We compared cognitive performance across different amyloid beta (Aβ) positron emission tomography (A ±) statuses and EA levels (High EA/Low EA).

View Article and Find Full Text PDF

NOTCH3 Mutation Causes Glymphatic Impairment and Promotes Brain Senescence in CADASIL.

CNS Neurosci Ther

January 2025

Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.

Aims: The aim of this study is to investigate the role of glymphatic function of cerebral autosomal dominant arteriopathy, subcortical infarcts, and leukoencephalopathy (CADASIL), the most common monogenic small vessel disease caused by NOTCH3 mutation, and to explore potential therapeutic strategies to improve glymphatic function.

Methods: We assessed glymphatic influx and efflux function in CADASIL mouse models (Notch3) and correlated these findings with brain atrophy in CADASIL patients. We also investigated the underlying mechanisms of glymphatic impairment, focusing the expression of AQP4 in astrocytic endfeet.

View Article and Find Full Text PDF

The cytoskeleton, composed of microtubules, intermediate filaments and actin filaments is vital for various cellular functions, particularly within the nervous system, where microtubules play a key role in intracellular transport, cell morphology, and synaptic plasticity. Tubulin-specific chaperones, including tubulin folding cofactors (TBCA, TBCB, TBCC, TBCD, TBCE), assist in the proper formation of α/β-tubulin heterodimers, essential for microtubule stability. Pathogenic variants in these chaperone-encoding genes, especially TBCD, have been linked to Progressive Encephalopathy with Brain Atrophy and Thin Corpus Callosum (PEBAT, OMIM #604,649), a severe neurodevelopmental disorder.

View Article and Find Full Text PDF

Clinical Diagnosis and Differential Diagnosis Between CSF1R- and AARS2-Related Leukoencephalopathy.

J Mol Neurosci

January 2025

Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730, China.

CSF1R-related leukoencephalopathy (CSF1R-L) and AARS2-related leukoencephalopathy (AARS2-L) were two disease entities sharing similar phenotype and even pathological changes. Although clinically, radiologically, and pathologically similar, they were caused by mutation of two different genes. As the rarity of the two diseases, the differential diagnosis of them was difficult.

View Article and Find Full Text PDF

Sarcopenia and cancer cachexia are two life-threatening conditions often misdiagnosed. The skeletal muscle is one of the organs most adversely affected by these conditions, culminating in poor quality of life and premature mortality. In addition, it has been suggested that chemotherapeutic agents exacerbate cancer cachexia, as is the case of doxorubicin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!