The present study examined noradrenaline-induced modulation of ATP-evoked currents in dorsal root ganglion (DRG) neurons after sciatic nerve injury (transection). ATP (10 microM) generated fast/mixed type of whole-cell membrane currents, possibly as mediated via P2X(3)/P2X(3)-like receptors, and slow type of the currents, possibly as mediated via P2X(2/3) receptors, in acutely dissociated L4/5 DRG neurons, without significant difference between sham and injury group. For sham group, noradrenaline (10 microM) enhanced fast/mixed type of ATP-evoked currents in ipsilateral DRG neurons, that is not inhibited by H-7, a broad inhibitor of protein kinases, but otherwise it had no effect on slow type of the currents. For injury group, noradrenaline (10 microM) significantly potentiated slow type of ATP-evoked currents in ipsilateral DRG neurons, that is abolished by H-7 or GF109203X, a selective inhibitor of protein kinase C (PKC), while it depressed fast/mixed type of the currents. In the analysis of real-time reverse transcription-polymerase chain reaction, an increase in the mRNAs for alpha(1b), alpha(2a), alpha(2d), and beta(2) adrenergic receptors was found with the ipsilateral DRGs after sciatic nerve injury. Collectively, the results of the present study suggest that noradrenaline potentiates P2X(2/3) receptor currents by activating PKC via alpha(1) adrenergic receptors linked to G(q) protein, perhaps dominantly alpha(1b) adrenergic receptors, in DRG neurons after sciatic nerve injury. This may account for a nociceptive pathway in response to noradrenergic sprouting after peripheral nerve injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pain.2005.10.016DOI Listing

Publication Analysis

Top Keywords

nerve injury
20
drg neurons
20
sciatic nerve
16
neurons sciatic
12
atp-evoked currents
12
fast/mixed type
12
slow type
12
type currents
12
adrenergic receptors
12
dorsal root
8

Similar Publications

Purpose: Current technologies to define the zone of acute peripheral nerve injury intraoperatively are limited by surgical experience, time, cumbersome electrodiagnostic equipment, and interpreter reliability. In this pilot study, we evaluated a real-time, label-free optical technique for intraoperative nerve injury imaging. We hypothesize that fluorescence lifetime imaging (FLIm) will detect a difference between the time-resolved fluorescence signatures for acute crush injuries versus uninjured segments of peripheral nerves in sheep.

View Article and Find Full Text PDF

Individuals with intellectual disabilities (ID) often exhibit lower levels of physical fitness compared to the general population, including reduced strength, endurance, flexibility, and coordination. Dynamic neuromuscular stabilization (DNS) training can potentially improve the performance of adults with ID caused by weak motor skills due to a lack of desirable nerve growth during childhood and before puberty. Also, DNS training proposed to improve physical fitness in this population, but the effectiveness and durability of DNS training on specific fitness components have not been well-established.

View Article and Find Full Text PDF

Nowadays, extracellular vesicles (EVs) such as exosomes participate in cell-cell communication and gain attention as a new approach for cell-free therapies. Recently, various studies have demonstrated the therapeutic ability of exosomes, while the biological effect of human endometrial stem cell (hEnSC)-derived small EVs such as exosomes is still unclear. Herein, we obtained small EVs from hEnSC and indicated that these small EVs activate the vital cell signaling pathway and progress neurite outgrowth in PC-12 cell lines.

View Article and Find Full Text PDF

Advances in 3D printing combined with tissue engineering for nerve regeneration and repair.

J Nanobiotechnology

January 2025

Department of Neurology, Affiliated Hospital of Jiujiang University, No. 57 East Xunyang Road, Jiujiang, Jiangxi, 332005, China.

The repair of nerve damage has long posed a challenge owing to limited self-repair capacity and the highly differentiated nature of nerves. While new therapeutic and pharmacologic interventions have emerged in neurology, their regenerative efficacy remains limited. Tissue engineering offers a promising avenue for overcoming the limitations of conventional treatments and increasing the outcomes of regenerative repair.

View Article and Find Full Text PDF

Objective: To investigate the application value of arthroscopic channel modification in meniscal injury repair.

Methods: We retrospectively analyzed the data of 100 patients with meniscus injuries treated with knee arthroscopy from December 2022 to December 2023 and divided them into a control group and a modified group according to the application of "arthroscopic access modification technology". We compared the operation time, postoperative hospitalization time, VAS score, Lysholm knee function score, postoperative complications, and postoperative images of the patients in these two groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!