The adult substantia nigra bears the capacity to generate new neural cells throughout adulthood. The mechanisms of cellular plasticity in this brain region remain unknown. In the adult dentate gyrus, dopamine was suggested to be one of the key players in neurogenesis. We therefore investigated nigral cellular plasticity in the 6-OHDA rat model of Parkinson's disease. The absolute numbers of newborn cells in the SN were not affected by dopamine depletion. Interestingly, we found a specific downregulation of generation of newborn nigral astrocytic cells. As enriched environment with physical activity are robust inducers of neuro- and gliogenesis in the adult DG, we investigated the role of these physiological stimuli in nigral cellular plasticity and in motor behavior of 6-OHDA lesioned rats. We describe a significant increase in numbers of newborn NG2-positive and GFAP-positive cells in the SN. Moreover, 6-OHDA lesioned animals living in enriched environment with physical activity for 7 weeks showed improved motor behavior compared to controls under standard conditions. Thus, physiological neurogenic and gliogenic stimuli induce significant microenvironmental changes in the adult SN and improve motor behavior in the 6-OHDA lesion model of PD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2005.11.004DOI Listing

Publication Analysis

Top Keywords

cellular plasticity
16
motor behavior
16
enriched environment
12
adult substantia
8
substantia nigra
8
6-ohda rat
8
rat model
8
model parkinson's
8
parkinson's disease
8
nigral cellular
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!