Animal models of cavitation in pulmonary tuberculosis.

Tuberculosis (Edinb)

Department of Comparative Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Room 811, Baltimore, MD 21205, USA.

Published: September 2006

Transmission of tuberculosis occurs with the highest frequency from patients with extensive, cavitary, pulmonary disease and positive sputum smear microscopy. In animal models of tuberculosis, the development of caseous necrosis is an important prerequisite for the formation of cavities although the immunological triggers for liquefaction are unknown. We review the relative merits and the information gleaned from the available animal models of pulmonary cavitation. Understanding the host-pathogen interaction important to the formation of cavities may lead to new strategies to prevent cavitation and thereby, block transmission.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tube.2005.09.001DOI Listing

Publication Analysis

Top Keywords

animal models
12
formation cavities
8
models cavitation
4
cavitation pulmonary
4
pulmonary tuberculosis
4
tuberculosis transmission
4
transmission tuberculosis
4
tuberculosis occurs
4
occurs highest
4
highest frequency
4

Similar Publications

Background: Although bariatric and metabolic surgical methods, including duodenal-jejunal bypass (DJB), were shown to improve metabolic dysfunction-associated steatotic liver disease (MASLD) in clinical trials and experimental rodent models, their underlying mechanisms remain unclear. The present study therefore evaluated the therapeutic effects and mechanisms of action of DJB in rats with MASLD.

Methods: Rats with MASLD were randomly assigned to undergo DJB or sham surgery.

View Article and Find Full Text PDF

Purpose: We aimed to investigate the role of gallic acid treatment on spinal cord tissues after spinal cord injury (SCI) and its relationship with endoplasmic reticulum (ER) stress by histochemical, immunohistochemical, and in-silico techniques.

Methods: Thirty female Wistar albino rats were divided into three groups: sham, SCI, and SCI+gallic acid. SCI was induced by dropping a 15-g weight onto the exposed T10-T11 spinal cord segment.

View Article and Find Full Text PDF

Purpose: To evaluate intravenous meropenem and intraperitoneal 10% aqueous extract of Schinus terebinthifolius (aroeira) in elderly rats after autogenous fecal peritonitis.

Methods: Thirty 18-month-old Wistar rats underwent peritonitis with 4 mL/kg of autogenous fecal solution. They were stratified into groups: control without treatment; study I, treated with meropenem (40 mg/kg); and study II, treated with meropenem at the same dose and intraperitoneal 10% aqueous extract of aroeira.

View Article and Find Full Text PDF

The transmission bottleneck, defined as the number of viruses shed from one host to infect another, is an important determinant of the rate of virus evolution and the level of immunity required to protect against virus transmission. Despite its importance, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission bottleneck remains poorly characterized. We adapted a SARS-CoV-2 reverse genetics system to generate a pool of >200 isogenic SARS-CoV-2 viruses harboring specific 6-nucleotide barcodes, infected donor hamsters with this pool, and exposed contact hamsters to paired infected donors, varying the duration and route of exposure.

View Article and Find Full Text PDF

Targeting TRPC channels for control of arthritis-induced bone erosion.

Sci Adv

January 2025

Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.

Arthritis leads to bone erosion due to an imbalance between osteoclast and osteoblast function. Our prior investigations revealed that the Ca-selective ion channel, Orai1, is critical for osteoclast maturation. Here, we show that the small-molecule ELP-004 preferentially inhibits transient receptor potential canonical (TRPC) channels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!