In a previous article [Carbohydr. Res.2001, 331, 163-171] two different structures for the possible modular repeating unit of the extracellular beta-glucan, epiglucan produced by the fungus Epicoccum nigrum strain F19 were proposed. Clarifying which was the more likely one was considered essential before attempts were made to understand how epiglucan was assembled by this fungus. Data from Smith degradation analyses of epiglucan were consistent with the repeating unit of structure I, where single glucosyl residues are attached by (1-->6)-beta-linkages to two out of every three glucosyl residues in the (1-->3)-beta-linked glucan backbone. Repeated Smith degradations of 14C-glucose labelled epiglucan showed that chain elongation occurred from its non-reducing end. Side chain insertion into the growing glucan was followed by analysis of real time incorporation of 13C-glucose into epiglucan by 13C NMR, and 14C-glucose by enzymic digestion of the synthesised 14C-epiglucan. All data obtained were consistent with the view that single (1-->6)-beta-linked glucosyl side residues are inserted simultaneously as the glucan backbone elongates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carres.2005.10.013 | DOI Listing |
NPJ Antimicrob Resist
January 2025
Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
The genus Nocardia comprises over 130 species of soil-dwelling actinomycetes, many of which are opportunistic pathogens. Beyond their pathogenicity, Nocardia exhibits significant biosynthetic potential, producing an array of diverse antimicrobial secondary metabolites. This review highlights notable examples of these compounds and explores modern approaches to unlocking their untapped biosynthetic potential.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen, 518045, PR China.
Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.
View Article and Find Full Text PDFFood Chem Toxicol
January 2025
Department of Molecular and Translational Medicine, University of Brescia, Italy.
Background: Methylglyoxal (MGO), a highly reactive precursor of advanced glycation end products (AGEs), is endogenously produced and prevalent in various ultra-processed foods. MGO has emerged as a significant precursor implicated in the pathogenesis of type 2 diabetes and neurodegenerative diseases. To date, the effects of dietary MGO on the intestine have been limited explored.
View Article and Find Full Text PDFVet Microbiol
January 2025
Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China. Electronic address:
Cecropin AD (CAD), a hybrid antimicrobial peptide composed of the first 11 residues of cecropin A and last 26 residues of cecropin D, is a promising antibiotic candidate. Therefore, an efficient and convenient method for producing CAD is necessary for commercial applications. The Newcastle disease virus (NDV) has been widely used as a platform for gene delivery and exogenous protein expression.
View Article and Find Full Text PDFInt J Med Microbiol
January 2025
Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.
Cardiovascular diseases, primarily caused by atherosclerosis, are a major public health concern worldwide. Atherosclerosis is characterized by chronic inflammation and lipid accumulation in the arterial wall, leading to plaque formation. In this process, macrophages play a crucial role by ingesting lipids and transforming into foam cells, which contribute to plaque instability and cardiovascular events.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!