Background: In silico analyses based on sequence similarities with animal channels have identified a large number of plant genes likely to encode ion channels. The attempts made to characterise such putative plant channels at the functional level have most often relied on electrophysiological analyses in classical expression systems, such as Xenopus oocytes or mammalian cells. In a number of cases, these expression systems have failed so far to provide functional data and one can speculate that using a plant expression system instead of an animal one might provide a more efficient way towards functional characterisation of plant channels, and a more realistic context to investigate regulation of plant channels.
Results: With the aim of developing a plant expression system readily amenable to electrophysiological analyses, we optimised experimental conditions for preparation and transformation of tobacco mesophyll protoplasts and engineered expression plasmids, that were designed to allow subcellular localisation and functional characterisation of ion channels eventually in presence of their putative (possibly over-expressed) regulatory partners. Two inward K+ channels from the Shaker family were functionally expressed in this system: not only the compliant KAT1 but also the recalcitrant AKT1 channel, which remains electrically silent when expressed in Xenopus oocytes or in mammalian cells.
Conclusion: The level of endogenous currents in control protoplasts seems compatible with the use of the described experimental procedures for the characterisation of plant ion channels, by studying for instance their subcellular localisation, functional properties, structure-function relationships, interacting partners and regulation, very likely in a more realistic context than the classically used animal systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1352354 | PMC |
http://dx.doi.org/10.1186/1746-4811-1-14 | DOI Listing |
Inflamm Res
January 2025
Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.
Background: One of the etiologic components of degenerative spinal illnesses is intervertebral disc degeneration (IVDD), and the accompanying lower back pain is progressively turning into a significant public health problem. Important pathologic characteristics of IVDD include inflammation and acidic microenvironment, albeit it is unclear how these factors contribute to the disease.
Purpose: To clarify the functions of inflammation and the acidic environment in IVDD, identify the critical connections facilitating glycolytic crosstalk and nucleus pulposus cells (NPCs) pyroptosis, and offer novel approaches to IVDD prevention and therapy.
Nat Commun
January 2025
Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China.
The unsatisfactory ionic conductivity of solid polymer electrolytes hinders their practical use as substitutes for liquid electrolytes to address safety concerns. Although various plasticizers have been introduced to improve lithium-ion conduction kinetics, the lack of microenvironment understanding impedes the rational design of high-performance polymer electrolytes. Here, we design a class of Hofmann complexes that offer continuous two-dimensional lithium-ion conduction channels with functional ligands, creating highly conductive electrolytes.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
Laboratoire de Physiopathologie et Régulation des Transports Ioniques, Université de Poitiers, France.
Despite the importance of ocular surface in human physiology and diseases, little is known about ion channel expression, properties and regulation in ocular epithelial cells. Furthermore, human primary epithelial cells have rarely been studied in favor of rat, mouse and especially rabbit animal models. Here, we developed primary human Meibomian gland (hMGEC) and conjunctival (hConEC) epithelial cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616.
The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China.
This study combines experimental techniques and mathematical modeling to investigate the dynamics of C. elegans body-wall muscle cells. Specifically, by conducting voltage clamp and mutant experiments, we identify key ion channels, particularly the L-type voltage-gated calcium channel (EGL-19) and potassium channels (SHK-1, SLO-2), which are crucial for generating action potentials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!