Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The replicative lifespan of human keratinocytes in culture is restricted by a telomere-unrelated induction of p16INK4A (p16) and p14ARF. We have found that, in vivo, p16 is expressed by epidermal and oral keratinocytes at the migrating fronts of healing wounds and at the stromal interface of severely dysplastic and early invasive lesions and that such cells also invariably display increased expression of Laminin 5 (Lam5). In culture, p16 and Lam5 are coexpressed in keratinocytes at senescence, at the edges of wounds made in confluent cultures, and when cells are plated on dishes coated with the gamma2 precursor form of Lam5 (Lam5gamma2pre). Lam5/p16 coexpression in all three in vitro settings is associated with directional hypermotility and growth arrest. Hypermotility and growth arrest are uncoupled in p16- and p14ARF/p53-deficient keratinocytes and squamous cell carcinoma (SCC) cells; such cells become hypermotile is response to Lam5gamma2pre but do not growth arrest. Thus, the Lam5/p16 response is activated in normal wound healing, causing growth arrest of migratory keratinocytes that lead wound reepithelialization. This response also becomes activated at a critical stage of neoplastic progression, acting as a tumor suppressor mechanism. Rare premalignant cells that lose p16 remain motile and proliferative, thereby resulting in invasive growth as SCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1087-0024.2005.200415.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!