A model of density-dependent selection in a Mendelian single-locus population was analyzed in the case where the fitnesses of genotypic forms are exponential functions of the population size. Analytical and numerical studies of the model were performed for a diallelic locus, and parametric regions were established for different dynamic behaviors of the model. The diallelic model of density-dependent selection was generalized to a multiallelic locus; the results of its analysis are described.

Download full-text PDF

Source

Publication Analysis

Top Keywords

model density-dependent
8
density-dependent selection
8
model
5
[dynamic regimes
4
regimes model
4
model single-locus
4
single-locus density-dependent
4
density-dependent selection]
4
selection] model
4
selection mendelian
4

Similar Publications

An evolutionary game theory for event-driven ecological population dynamics.

Theory Biosci

January 2025

Faculty of Science and Engineering, Department of Biosciences, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.

Despite being a powerful tool to model ecological interactions, traditional evolutionary game theory can still be largely improved in the context of population dynamics. One of the current challenges is to devise a cohesive theoretical framework for ecological games with density-dependent (or concentration-dependent) evolution, especially one defined by individual-level events. In this work, I use the notation of reaction networks as a foundation to propose a framework and show that classic two-strategy games are a particular case of the theory.

View Article and Find Full Text PDF

The bacterial pathogen causes disease in coral species worldwide. The mechanisms of coral colonization, coral microbiome interactions, and virulence factor production are understudied. In other model species, virulence factors like biofilm formation, toxin secretion, and protease production are controlled through a density-dependent communication system called quorum sensing (QS).

View Article and Find Full Text PDF

Reactive Brownian Dynamics of Chemically Fueled Droplets: Roles of Attraction and Deactivation Modes.

J Phys Chem B

January 2025

Applied Theoretical Physics - Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany.

The self-assembly of biological membraneless organelles can be mimicked by active droplets resulting from chemically fueled microphase separation. However, how the nonequilibrium, transient structure of these active droplets can be controlled through the physicochemical input parameters is not yet well understood. In our work, a chemically fueled two-state chemical reaction and subsequent droplet growth and decay are modeled with a reactive Brownian dynamics simulation in two spatial dimensions.

View Article and Find Full Text PDF

Comprehensive Review of CO Adsorption on Shale Formations: Exploring Widely Adopted Isothermal Models and Calculation Techniques.

ACS Omega

December 2024

Western Australia School of Mines, Minerals, Energy and Chemical Engineering, Curtin University, 26 Dick Perry Avenues, Kensington, 6151 WA, Australia.

Article Synopsis
  • The burning of fossil fuels significantly contributes to climate change due to CO2 emissions, which account for 70-75% of global warming.
  • Shale reserves may offer a solution for CO2 storage, particularly through adsorbed gas, making it crucial to understand CO2 adsorption processes in shale using various isothermal models.
  • This research evaluates multiple isothermal models to predict CO2 adsorption in different shale samples and suggests enhancements to existing models for improved accuracy, including the integration of molecular dynamics simulations with experimental data.
View Article and Find Full Text PDF

Isolation caused by anthropogenic habitat fragmentation can destabilize populations. Populations relying on the inflow of immigrants can face reduced fitness due to inbreeding depression as fewer new individuals arrive. Empirical studies of the demographic consequences of isolation are critical to understand how populations persist through changing conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!