Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: This study sought to examine the word recognition performance in noise of individuals with a simulated low-frequency hearing loss. The goal was to understand how low-frequency hearing impairment affects performance on tasks that challenge temporal processing skills.
Methods: Twenty-two normal-hearing young adults participated. Monosyllabic words were presented in continuous and interrupted noise at 3 signal-to-noise ratios of -10, 0, and +10 dB. High-pass filtering of the stimuli at 3 different cutoff frequencies (ie, 1,000, 1,250, and 1,500 Hz) simulated the low-frequency hearing impairment.
Results: In general, performance decreased with increasing cutoff frequency, was higher for more favorable signal-to-noise ratios, and was superior in the interrupted condition relative to the continuous noise condition. One important revelation was that the magnitude of the performance superiority observed in the interrupted noise condition did not diminish with high-pass filtering; ie, the release from masking in interrupted noise was preserved.
Conclusions: The results of the present study complement previous findings in which this paradigm was used with low-pass filtering to simulate a high-frequency hearing loss. That is to say, low-frequency hearing channels are inherently poorer than high-frequency channels in temporal resolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/000348940511401111 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!